Metabolic Correlates of Temperament Factors of Personality

기질적 성격요인과 국소 뇌포도당대사의 상관연구: 성별에 따른 차이

  • Park, Hyun-Soo (Department of Nuclear Medicine, Seoul National University College of Mecicine) ;
  • Cho, Sang-Soo (Department of Nuclear Medicine, Seoul National University College of Mecicine) ;
  • Yoon, Eun-Jin (Department of Nuclear Medicine, Seoul National University College of Mecicine) ;
  • Bang, Seong-Ae (Department of Nuclear Medicine, Seoul National University College of Mecicine) ;
  • Kim, Yu-Kyeong (Department of Nuclear Medicine, Seoul National University College of Mecicine) ;
  • Kim, Sang-Eun (Department of Nuclear Medicine, Seoul National University College of Mecicine)
  • 박현수 (서울대학교 의과대학 핵의학교실) ;
  • 조상수 (서울대학교 의과대학 핵의학교실) ;
  • 윤은진 (서울대학교 의과대학 핵의학교실) ;
  • 방성애 (서울대학교 의과대학 핵의학교실) ;
  • 김유경 (서울대학교 의과대학 핵의학교실) ;
  • 김상은 (서울대학교 의과대학 핵의학교실)
  • Published : 2007.08.31

Abstract

Purpose: Gender differences in personality are considered to have biological bases. In an attempt to understand the gender differences of personality on neurobiological bases, we conducted correlation analyses between regional brain glucose metabolism and temperament factors of personality in males and females. Materials and Methods: Thirty-six healthy right-handed volunteers (18 males, 33.8$\pm$17.6 y; 18 females, 36.2$\pm$20.4 y) underwent FDG PET at resting state. Three temperament factors of personality (novelty seeking (NS), harm avoidance (HA), reward dependence (RD)) were assessed using Cloninger's 240-item Temperament and Character Inventory (TCD within 10 days of FOG PET scan. Correlation between regional glucose metabolism and each temperament factor was tested using SPM2. Results: In males, a significant negative correlation between NS score and glucose metabolism was observed in the bilateral superior temporal gyri, the hippocampus and the insula, while it was found in the bilateral middle frontal gyri, the right superior temporal gyrus and the left cingulate cortex and the putamen in females. A positive HA correlation was found in the right midbrain and the left cingulate gyrus in males, but in the bilateral basal ganglia in females. A negative RD correlation was observed in the right middle frontal and the left middle temporal gyri in males, while the correlation was found in the bilateral middle frontal gyri and the right basal ganglia and the superior temporal gyrus in females. Conclusion: These data demonstrate different cortical and subcortical metabolic correlates of temperament factors of personality between males and females. These results may help understand biological substrate of gender differences in personality and susceptibility to neuropsychiatric illnesses.

목적: 성격기질의 성차는 생물학적 기초를 가지고 있는 것으로 여겨진다. 성격기질의 성차를 신경생물학적 방법론을 통해 규명하기 위해, 국소 뇌포도당대사와 남성과 여성각각의 성격기질요인과의 상관을 분석하였다. 대상 및 방법 36명의 오른손잡이 대상자들이 자원하여 참가하였다(남성 18명, 평균연령, 33.8 17.6세 ; 여성 18명, 평균연령, 36.2 20.4세). 모든 참가자들로부터 안정상태의 FDG PET 이미지를 획득하여 분석에 활용하였다. FDG PET 스캔이 이루어진 후 10일 이내 Cloninger의 240문항 성격기질검사를 이용해 새로움추구(NS), 위험회피(HA) 및 보상의존(RD) 기질점수를 평가하였다. 각각의 성격기질요인점수와 국소뇌포도당대사의 상관을 SPM2를 이용해 분석했다. 결과: 남성에 있어 새로움추구 요인점수와 포도당대사 간 유의미한 부적상관이 관찰된 영역은 양쪽 상측두회, 해마 및 도회이었던 반면, 여성에서는 양쪽 중전두회, 오른쪽 상관자회 및 왼쪽 전대상회와 피각이었다. 위험회피 요인점수와 포도당대사 간 유의미한 정적상관이 관찰된 영역은 남성에 있어 오른쪽 흑질과 왼쪽 대상회였던 반면, 여성에서는 양쪽 기저핵군의 영역이었다. 마지막으로 남성에게서는 포도당대사와 보상의존 기질요인과의 부적상관이 오른쪽 중전두회 및 왼쪽 중측두회에서 관찰된 반면 여성에서는 양쪽 중전두회와 오른쪽 기저핵 영역 및 상측두회가 관찰되었다. 결론: 이 연구는 남성과 여성의 성격기질에 관여하는 뇌의 신경학적 기초가 다르며 이는 기억시스템은 물론 동기화 시스템을 포함한 뇌의 다양한 신경회로기능과 관련되어 있음을 보여주었다. 이러한 연구 결과는 성격의 기질적 측면에 있어서의 성차는 물론이고 성별에 따른 정신과적 질환의 유병 정도 차이를 이해하는 중요한 생물학적 기초를 제공할 것으로 기대한다.

Keywords

References

  1. Cloninger CR. A Systematic Method for Clinical Description and Classification of Personality Variants: A Proposal. Arch Gen Psychiatry 1987;44:573-87 https://doi.org/10.1001/archpsyc.1987.01800180093014
  2. Cloninger CR, Svravic M, Przybeck TR. A Psychobiological Model of Temperament and Character. Arch Gen Psychiatry 1993;50: 975-90 https://doi.org/10.1001/archpsyc.1993.01820240059008
  3. Chapman AL, Mayer JL, Specht MW, Farmer RF, Field CE. Passive avoidance learning as a function of Cloninger's temperament typology: an extension to male undergraduates. Pers Individ Dif 2003;35:1571-84 https://doi.org/10.1016/S0191-8869(02)00371-9
  4. Farmer RF, Field CE, Gremore TM, Chapman AL, Nash HM, Mayer JL. Passive avoidance learning among females as a function of Cloninger's temperament typology. Pers Individ Dif 2003;34: 983-97 https://doi.org/10.1016/S0191-8869(02)00083-1
  5. Eysenck HJ. The Effects of Psychotherapy: An Evaluation. J Consult Clin Psychol 1992;60:659-63 https://doi.org/10.1037/0022-006X.60.5.659
  6. Laine TP, Ahonen A, Rasanen P, Tiihonen J. Dopamine transporter density and novelty seeking among alchoholics. J Addict Disord 2001;20:91-6
  7. Compton PA, Anglin MD, Khalsa-Denison ME, Paredes Al. The D2 dopamine receptor gene, addiction, and personality: clinical correlates in cocaine abusers. Biol Psychiatry 1996;15:302-4
  8. Kaasinen V, Aalto S, Ngren K, Rinne JO. Insular Dopamine D2 receptors and Novelty Seeking Personality in Parkinson's Diseases. Mov Disord 2004;19:1348-51 https://doi.org/10.1002/mds.20191
  9. Kaasinen V, Nurmi E, Bergman J, Solin O, Kruki T, Rinne, JO. Personality traits and striatal 6-[$^{18}F]fluoro-L-dopa uptake in health elderly subjects. Neurosci Lett 2002;332:61-4 https://doi.org/10.1016/S0304-3940(02)00929-1
  10. Suhara T, Yasuno F, Sudo Y, Yamamoto M, Inoue M, Okubo Y., et al. Dopamine D2 Receptors in the Insular Cortex and the Personality Traits of Novelty Seeking. NeuroImage 2001;13:891-5
  11. Cloninger CR, Svravic M, Przybeck TR. Can personality assessment predict future depression? A twelve-month follow-up of 631 subjects. J Addict Disord 2006;92:35-44
  12. Hansenne M, Reggers J, Pinto E, Kjiri K, Ajamier A, Ansseau M. Temperament and character inventory (TCI) and depression. J Psychiatr Res 1999;33:31-6 https://doi.org/10.1016/S0022-3956(98)00036-3
  13. Pierson AR, Heuchert JW, Thomala L, Berk M, Plein H, Cloninger CR. Relationship between serotonin and the temperament and character inventory. Psychiatry Res 1999;89:29-37 https://doi.org/10.1016/S0165-1781(99)00079-7
  14. Garvey MJ, Noyes R Jr, Cook B, Blum N. Preliminary confirmation of the proposed link between reward-dependence traits and norepinephrine. Psychiatry Res 1996;65:61-4 https://doi.org/10.1016/0165-1781(96)02954-X
  15. Argembeau AD, Collette F, Van der Linden M, Laureys S, Del Fiore G, Degueldre C., et al. Self-referential reflective activity and its relationship with rest: a PET study. NeuroImage 2004;25: 616-24
  16. Morcom AM, Fletchera PC. Does the brain have a baseline? Why we should be resisting a rest. NeuroImage In press, 2006
  17. Youn T, Lyoo IK, Kim JJ, Park HJ, Ha KS, Lee DS., et al. Relationship between personality trait and regional cerebral glucose metabolism assessed with positron emission tomography. Biol Psychol 2002;60:109-20 https://doi.org/10.1016/S0301-0511(02)00047-9
  18. Hakamata Y, Iwase M, Iwata H, Kobayashi T, Tamaki T, Nishio M., et al. Regional brain cerebral glucose metabolism and temperament: A positron emission tomography study. Neurosci Lett 2006;396:33-7 https://doi.org/10.1016/j.neulet.2005.11.017
  19. Carey WB, McDevitt SC. Revision of the Infant Temperament Questionnaire. Pediatrics 1978;61:735-9
  20. Mazaide M, Boudreault M, Thivierge J, Caperaa P, Cote R. Infant temperament: SES and gender differences and reliability of measurement in a large Quebec Sample. Merrill Palmer Q 1984;30: 213-6
  21. Hsu C, Soong W, Stigler J, Hong C, Liang C. The temperament characteristics of Chinese babies. Child Dev 1981;52:1337-40 https://doi.org/10.2307/1129528
  22. Rothbart MK. Longitudinal observation on infant temperament. Dev Psychol 1986;22:356-65 https://doi.org/10.1037/0012-1649.22.3.356
  23. Giedd JN, Snell JW, Lange N, Rajapakse JC, Casey BJ, Kozuch PL., et al. Quantitative magnetic resonance imaging of human brain development: ages 4-18. Creb Cortex 1996;6:551-60 https://doi.org/10.1093/cercor/6.4.551
  24. Swaab DF, Fliers E. A sexually dimorphic nucleus in the human brain. Science 1985;228:1112-5 https://doi.org/10.1126/science.3992248
  25. Allen LS, Hines M, Shryne JE, Gorski RA. Two sexually dimorphic cell groups in the human brain. J Neurosci 1989;9: 497-506 https://doi.org/10.1523/JNEUROSCI.09-02-00497.1989
  26. Zhou JN, Hofman MA, Gooren, LJG, Swaab DF. A sex difference in the human brain and its relation to transexuallity. Nature 1995;378:68-70 https://doi.org/10.1038/378068a0
  27. Gorski RA. Development of the cerebral cortex: XV. Sexual differentiation of the central nervous system. J Am Acad Child Adolesc Psychiatry 1999;38:344-6 https://doi.org/10.1097/00004583-199903000-00025
  28. Park J-J, Baum MJ, Paredes RG, Tobet SA. Neurogenesis and cell migration into the sexually dimorphic preoptic area/anterior hypothalamus of the fetal ferret. J Neurobiol 1996;30:315-28 https://doi.org/10.1002/(SICI)1097-4695(199607)30:3<315::AID-NEU1>3.0.CO;2-7
  29. Kimura D. Sex, sexual orientation and sex hormones influence human cognitive function. Curr Opin Neurobiol 1996;6:259-63 https://doi.org/10.1016/S0959-4388(96)80081-X
  30. Goldstein JM, Seidman LJ, Horton, NJ, Makris N, Kennedy DN, Canivess, Jr. VS., et al. Normal Sexual Dimorphism of the Adult Human Brain Assessed by In Vivo Magnetic Resonance Imaging. Creb Cortex 2001;11:490-7 https://doi.org/10.1093/cercor/11.6.490
  31. Sung SM, Kim JH, Yang EJ, Abrams KY, Lyoo IK. Reliability and validity of the Korean version of the Temperament and Character Inventory. Compr Psychiatr 2002;43:235-43 https://doi.org/10.1053/comp.2002.30794
  32. Goldstein DS, Imrich R, Peckham E, Holmes C, Lopez G, Crews C, Hardy J, Singleton A, Hallett M. Neurocirculatory and nigrostriatal abnormalities in Parkinson disease from LRRK2 mutation. Neurology In Press, 2007
  33. Bedard P, Larochelle L, Parent A, Poirier LJ. The nigrostriatal pathway: a correlative study based on neuroanatomical and neurochemical criteria in the cat and the monkey. Exp Neurol 1969;25:365-77 https://doi.org/10.1016/0014-4886(69)90131-9
  34. Kim HS, Iyengar S, Wood PL. Reversal of the actions of morphine on mesocortical dopamine metabolism in the rat by the kappa agonist MR-2034: tentative mu-2 opioid control of mesocortical dopaminergic projections. Life Sci 1987;41:1711-5 https://doi.org/10.1016/0024-3205(87)90598-4
  35. Oades RD, Halliday GM. Ventral tegmental (A10) system: neurobiology. 1. Anatomy and connectivity. Brain Res 1987;434: 117-65. Review
  36. Caspi A, Sugden K, Moffitt TE, Taylor A, Craig IW, Harrington H, McClay J, Mill J, Martin J, Braithwaite A, Poulton R. Influence of Life Stress on Depression: Moderation in the 5-HTT Gene. Science 2003;301:386-389 https://doi.org/10.1126/science.1083968
  37. Daws LC, Montanez S, Munn JL, Owens WA, Baganz NL, Boyce-Rustay JM, Millstein RA, Wiedholz LM, Murphy DL, Holmes A. Daws LC, Montanez S, Munn JL, Owens WA, Baganz NL, Boyce-Rustay JM, Millstein RA, Wiedholz LM, Murphy DL, Holmes A. Ethanol inhibits clearance of brain serotonin by a serotonin transporter-independent mechanism. J Neurosci 2006; 26:6431-8 https://doi.org/10.1523/JNEUROSCI.4050-05.2006
  38. Clifford JO, Anand S. Tri-axial recording of event-related potentials during passive cognitive tasks in patients with Alzheimer's disease. Int J Neurosci 1997;92:29-45 https://doi.org/10.3109/00207459708986387
  39. Neumaier JF, Petty F, Kramer GL, Szot P, Hamblin MW. Learned helplessness increases 5-hydroxytryptamine1B receptor mRNA levels in the rat dorsal raphe nucleus. Biol Psychiatry 1997;41: 668-74 https://doi.org/10.1016/S0006-3223(96)00114-X
  40. Dombrowski PA, Andreatini R. Reversible inactivation of the dorsal raphe nucleus blocked the antipanic-like effect of chronic imipramine in the elevated T-maze. Neurosci Lett 2006;407:80-5 https://doi.org/10.1016/j.neulet.2006.08.015
  41. Naito S, Sato K, Yoshida K, Higuchi H, Takahashi H, Kamata M, Ito K, Ohkubo T, Shimizu T. Gender differences in the clinical effects of fluvoxamine and milnacipran in Japanese major depressive patients. Psychiatry Clin Neurosci 2007;61:421-7 https://doi.org/10.1111/j.1440-1819.2007.01679.x
  42. Sambeth A, Blokland A, Harmer CJ, Kilkens TO, Nathan PJ, Porter RJ, Schmitt JA, Scholtissen B, Sobczak S, Young AH, Riedel WJ. Sex differences in the effect of acute tryptophan depletion on declarative episodic memory: a pooled analysis of nine studies. Neurosci Biobehav Rev 2007;31:516-29 https://doi.org/10.1016/j.neubiorev.2006.11.009
  43. Mingote S, de Bruin JP, Feenstra MG. Noradrenaline and dopamine efflux in the prefrontal cortex in relation to appetitive classical conditioning. J Neurosci 2004;24:2475-80 https://doi.org/10.1523/JNEUROSCI.4547-03.2004
  44. Feenstra MG, Vogel M, Botterblom MH, Joosten RN, de Bruin JP. Dopamine and noradrenaline efflux in the rat prefrontal cortex after classical aversive conditioning to an auditory cue. Eur J Neurosci 2001; 13:1051-4 https://doi.org/10.1046/j.0953-816x.2001.01471.x
  45. Damasio AR. The feeling of what happens: body and emotion in the making of consciousness. New York: Harcourt; 1999. p. 155-156
  46. Paulus MP, Hozack N, Zauscher B, McDowell JE, Frank L, Brown GG., et al. Prefrontal, parietal, and temporal cortex networks underlie decision-making in the presence of uncertainty. NeuroImage 2000;13:91-100
  47. Matthews SC, Simmons AN, Lane SD, Paulus MP. Selective activation of the nucleus accumbens during risk-taking decision making. Neuroreport 2004;15:2123-7 https://doi.org/10.1097/00001756-200409150-00025
  48. Krimer LS, Muly EC 3rd, Williams GV, Goldman-Rakic PS. Dopaminergic regulation of cerebral cortical microcirculation. Nat Neurosci 1998;1:286-9 https://doi.org/10.1038/1099
  49. Cabeza R, St Jacques P. Functional neuroimaging of autobiographical memory. Trends Cogn Sci 2007;11:219-27 https://doi.org/10.1016/j.tics.2007.02.005
  50. Boyer P, Phillips JL, Rousseau FL, Ilivitsky S. Hippocampal abnormalities and memory deficits: New evidence of a strong pathophysological link in schizophrenia. Brain Res Rev 2007;54: 92-112 https://doi.org/10.1016/j.brainresrev.2006.12.008
  51. Sakagami M, Pan X. Functional role of the ventrolateral prefrontal cortex in decision making. Curr Opin Neurobiol 2007;17:228-33 https://doi.org/10.1016/j.conb.2007.02.008
  52. Rushworth MFS, Behrens TEJ, Rudebeck PH, Walton ME. Contrasting roles for cingulate and orbitofrontal cortex in decisions and social behavior. Trends Cogn Sci 2007;11:168-76 https://doi.org/10.1016/j.tics.2007.01.004
  53. Frank MJ, Claus ED. Anatomy of a Decision: Striato-Orbitofrontal Interactions in Reinforcement Learning, Decision Making, and Reversal. Psychol Rev 2006;113:300-26 https://doi.org/10.1037/0033-295X.113.2.300
  54. Harrington DL, Boyd LA, Mayer AR, Sheltraw MD, Lee RR, Huang M., et al. Neural representation of interval encoding and decision making. Cognitive Brain Res 2004;21:193-205 https://doi.org/10.1016/j.cogbrainres.2004.01.010
  55. Bellgrove MA, Hester R, Garavan H. The functional neuroanatomical correlates of response variability: evidence from a response inhibition task. Neuropsychologia 2004;42:1910-6 https://doi.org/10.1016/j.neuropsychologia.2004.05.007
  56. Cavana AE, Trimble MR. The precuneus: a review of its functional anatomy and behavioral correlates. Brain 2006;129: 564-83 https://doi.org/10.1093/brain/awl004
  57. Elliott R, Newman JL, Longe OA, Deakin JFW. Instrumental responding for rewards is associated with enhanced neuronal response in subcortical reward systems. NeuroImage 2004;21: 984-90 https://doi.org/10.1016/j.neuroimage.2003.10.010
  58. Knutson B, Adams CM, Fong GW, Hommer D. Anticipation of Increasing Monetary Reward Selectively Recruits Nucleus Accumbens. J Neurosci 2001;21:RC159 1-5
  59. Seeck M, Mainwaring N, Ives J, Blume H, Dubuisson D, Cosgrove R., et al. Differential neural activity in the human temporal lobe evoked by faces of family members and friends. Ann Neurol 1997;34:369-72 https://doi.org/10.1002/ana.410340311
  60. Morecraft RJ, Geula C, Mesulam MM. Cytoarchitecture and neural afferents of orbitofrontal cortex in the brain of the monkey. J Comp Neurol 1992;323:341-58 https://doi.org/10.1002/cne.903230304
  61. Yoshino A, Kimura Y, Yoshida T, Takahashi Y, Nomura S. Relationships between temperament dimensions in personality and unconscious emotional responses. Biol Psychiatry 2005;57:1-6 https://doi.org/10.1016/j.biopsych.2004.09.027
  62. Tanaka SC, Samekima K, Okada G, Ueda K, Okamoto Y, Yamawaki S., et al. Brain mechanism of reward prediction under predictable and unpredictable environmental dynamics. Neural Networks 2006;19:1233-41 https://doi.org/10.1016/j.neunet.2006.05.039
  63. Geday J, Ostergaard K, Gjedde A. Stimulation of subthalamic nucleus inhibits emotional activation of fusiform gyrus. NeuroImage 2006;33:706-14 https://doi.org/10.1016/j.neuroimage.2006.06.056
  64. Schultz W, Apicella P, Ljungberg T. Responses of monkey dopamine neurons to reward and conditioned stimuli during successive steps of learning a delayed response task. J Neurosci 1993;13:900-13 https://doi.org/10.1523/JNEUROSCI.13-03-00900.1993
  65. Schultz W. Dopamine neurons and their role in reward mechanisms. Curr Opin Neurobiol 1997;7:191-7 https://doi.org/10.1016/S0959-4388(97)80007-4
  66. Nieuwenhuis S, Heslenfeld DJ, von Geusau NJA, Mars RB, Holroyd CB, Yeung, N. Activity in human reward-sensitive brain areas is strongly context dependent. NeuroImage 2005;25:1302-9 https://doi.org/10.1016/j.neuroimage.2004.12.043
  67. Tranel D, Damasio H, Denburg NL, Bechara A. Does gender play a role in functional asymmetry of ventromedial prefrontal cortex? Brain 2005;128:2872-81 https://doi.org/10.1093/brain/awh643