The Physiological Role of CPR1 in Saccharomyces cerevisiae KNU5377 against Menadione Stress by Proteomics

  • Kim, Il-Sup (Department of Biology, Kyungpook National University) ;
  • Yun, Hae-Sun (Division of Enteric and Hepatitis Viruses, Center for Infectious Diseases, National Institute of Health) ;
  • Kwak, Sun-Hye (Department of Microbiology, Kyungpook National University) ;
  • Jin, Ing-Nyol (Department of Microbiology, Kyungpook National University)
  • Published : 2007.08.30

Abstract

In order to understand the functional role of CPRl in Saccharomyces cerevisiae KNU5377 with regard to its multi-tolerance characteristics against high temperatures, inorganic acids, and oxidative stress conditions, whole cellular proteins were analyzed via liquid chromatography electrospray ionization tandem mass spectrometry (LC-ESI-MS/MS). This procedure was followed by two-dimensional (2-D) gel electrophoresis. Under menadione stress conditions, the 23 upregulated proteins were clearly identified only in the wild- type strain of KNU5377. Among the proteins, Sodl1p Tsa1p, Ahp1, Cpr1p, Cpr3, Ssb2p, and Hsp12p were identified as components of antioxidant systems or protein-folding related systems. The CPR1 protein could not be completely detected in the $cpr1{\Delta}$ mutant of KNU5377 and the other upregulated proteins in the wild-type strain evidenced a clear correlation with the results of immunoblot analysis. Moreover, a reduction in growth patterns (about 50%) could be observed in the $cpr1{\Delta}$ mutant, as compared with that of the wild-type strain under mild MD stress conditions. These results indicate that the upregulation of CPR1 may contribute to tolerance against MD as an inducer of oxidative stress.

Keywords

References

  1. Ansari, H., G. Greco, and J. Luban. 2002. Cyclophilin A peptidylprolyl isomerase activity promotes Zpr1 nuclear export. Mol. Cell. Biol. 22, 6993-7003 https://doi.org/10.1128/MCB.22.20.6993-7003.2002
  2. Arevalo-Rodriguez, M., M.E. Cardenas, X. Wu, S.D. Hanes, and J. Heitman. 2000. Cyclophilin A and Ess1 interact with and regulate silencing by the Sin3-Rpd3 hitone deacetlyase. EMBO J. 19, 3739-3749 https://doi.org/10.1093/emboj/19.14.3739
  3. Arevalo-Rodriguez, M. and J. Heitman. 2005. Cyclophilin A is localized to the nucleus and controls meiosis in Saccharomyces cerevisiae. Eukaryotic Cell 4, 17-29 https://doi.org/10.1128/EC.4.1.17-29.2005
  4. Arevalo-Rodriguez, M., X. Wu, S.D. Hanes, and J. Heitman. 2004. Prolyl isomerase in yeast. Front. Biosci. 9, 2420-2446 https://doi.org/10.2741/1405
  5. Bona, E., F. Marsano, M. Cavaletto, and G. Berta. 2007. Proteomic characterization of copper stress response in Canabis sativa roots. Proteomics 7, 1121-1130 https://doi.org/10.1002/pmic.200600712
  6. Brown, C.R., D.Y. Cui, G.G.C. Hung, and H.L. Chiang. 2001. Cyclophilin A mediates Vid22p function in the import of fructose- 1,6-biphosphatase into vid vesicles. J. Biol. Chem. 276, 48017-48026 https://doi.org/10.1074/jbc.M109222200
  7. Cardenas, M.E., E. Lim, and J. Heitman. 1995. Mutations that perturb cyclophilin A ligand binding pocket confer cyclosporin A resistance in Saccharromyces cerevisiae. J. Biol. Chem. 270, 20997-21002 https://doi.org/10.1074/jbc.270.36.20997
  8. Christian, G., L. Gilles, L. Jaekwon, J.M. Buhler, K. Sylvie, P. Michel, B. Helian, B.T. Michael, and L. Jean. 1998. The $H_2O_2$ stimulon in Saccharomyces cerevisiae. J. Biol. Chem. 273, 22480-22489 https://doi.org/10.1074/jbc.273.35.22480
  9. Davidson, J.F., B. Whyte, P.H. Bissinger, and R.H. Schiestl. 1996. Oxidative stress in involved in heat cell death in Saccharomyces cerevisiae. Proc. Natl. Acad. Sci. USA 93, 5116-5121
  10. Delgado, M.L., J.E. O'Connor, I. Azorin, J. Renau-Piqueras, M.L. Gil, and D. AGozallo. 2001. The glyceraldehyde-3-phosphate dehydrogenase polypeptides encoded by the Saccharomyces cerevisiae TDH1, TDH2, and TDH3 genes are also cell wall proteins. Microbiology 147, 411-417 https://doi.org/10.1099/00221287-147-2-411
  11. de Olivaria, I.M., J.A. Henriques, and D. Bonatto. 2007. In silico identification of a new group of specific bacterial and fungal nitroreductases-like proteins. Biochem. Biophys. Res. Commun. 355, 919-925 https://doi.org/10.1016/j.bbrc.2007.02.049
  12. Dijck, P.V. and G.W. Walker. 2006. Physiological and molecular responses of yeasts to the environment, p. 111-152. In A. Querol and G.H. Fleet. (eds.), Yeasts in food and beverages, Springer Verlag, New York, USA
  13. Estrruch, F. 2000. Stress-controlled transcription factors, stress-induced genes and stress tolerance in budding yeast. FEMS Microbiol. Rev. 24, 469-486 https://doi.org/10.1111/j.1574-6976.2000.tb00551.x
  14. Galat, A. and S.M. Metcalfe. 1995. Peptidyl proline cis/trans isomerase. Prog. Biophys. Mol. Biol. 63, 67-118 https://doi.org/10.1016/0079-6107(94)00009-X
  15. George, R., T. Beddoe, K. Landl, and T. Lithgow. 1998. The yeast nascent polypeptide-associated complex initiates protein targeting to mitochondria in vivo. Proc. Natl. Acad. Sci. USA 95, 2296-2301
  16. Kim, I.S., H.S. Yun, I.S. Park, H.Y. Sohn, H. Iwahashi, and I.N. Jin. 2006. A knockout strain of CPR1 induced during fermentation of Saccharomyces cerevisiae KNU5377 is susceptible to various types of stress. J. Biosci. Bioeng. 102, 288-296 https://doi.org/10.1263/jbb.102.288
  17. Lee, J., C. Godon, G. Langiel, D. Spector, J. Garin, J. Labarre, and M.B. Toledano. 1999. Yap1 and Skn7 control two specialized oxidative stress response regulons in yeast. J. Biol. Chem. 274, 16040-16046 https://doi.org/10.1074/jbc.274.23.16040
  18. Lushchak, V.I. and D.V. Gospodaryov. 2005. Catalase protects cellular proteins from oxidative modification in Saccharomyces cerevisiae. Cell. Biol. Int. 29, 187-192 https://doi.org/10.1016/j.cellbi.2004.11.001
  19. Moskvina, E., C. Schuller, C.T. Maurer, W.H. Mager, and H. Ruis. 1998. A search in the genome of Saccharomyces cerevisiae for genes regulated via stress response elements. Yeast 14, 1041-1050 https://doi.org/10.1002/(SICI)1097-0061(199808)14:11<1041::AID-YEA296>3.0.CO;2-4
  20. Piper, P.W., B. Curran, M.W. Davies, A. Lockheart, and G. Reid. 1986. Transcription of the phosphoglycerate kinase gene of Saccharomyces cerevisiae increases when fermentative cultures are stressed by heat-shock. Eur. J. Biochem. 161, 525-531 https://doi.org/10.1111/j.1432-1033.1986.tb10474.x
  21. Reimann, B., J. Bradsher, J. Franke, F. Hartmann, M. Wiedmann, S. Prehn, and B. Wiedmann. 1999. Initial characterization of the nascent polypeptide-associated complex in yeast. Yeast 15, 397-407 https://doi.org/10.1002/(SICI)1097-0061(19990330)15:5<397::AID-YEA384>3.0.CO;2-U
  22. Rouhier, N. and J.P. Jacquot. 2005. The plant multigenic family of thiol peroxidase. Free Rad. Biol. Med. 38, 1413-1421 https://doi.org/10.1016/j.freeradbiomed.2004.07.037
  23. Sykes, K., M. Gething, and J. Sambrook. 1993. Proline isomerases function during heat shock. Proc. Natl. Acad. Sci. USA 90, 5853-5857
  24. Tucker, C.L. and S. Fields. 2004. Quantitative genome-wide analysis of yeast deletion strain sensitivities to oxidative and chemical stress. Comp. Funct. Genom. 5, 216-224 https://doi.org/10.1002/cfg.391
  25. Wang, P. and J. Heitman. 2005. The cyclophilins. Genome Biol. 6, 226.1-226.6 https://doi.org/10.1186/gb-2005-6-4-p6
  26. Zanei, C.F., A.L. Maragno, A.P. Gregio, S. Komili, J.R. Pandolfi, C.A. Mestriner, W.R. Lustri, and S.R. Valentini. 2006. eIF5A binds to translational machinery components and affects translation in yeast. Biochem. Biophys. Res. Commun. 348, 1358-1366 https://doi.org/10.1016/j.bbrc.2006.07.195