References
- Ansari, H., G. Greco, and J. Luban. 2002. Cyclophilin A peptidylprolyl isomerase activity promotes Zpr1 nuclear export. Mol. Cell. Biol. 22, 6993-7003 https://doi.org/10.1128/MCB.22.20.6993-7003.2002
- Arevalo-Rodriguez, M., M.E. Cardenas, X. Wu, S.D. Hanes, and J. Heitman. 2000. Cyclophilin A and Ess1 interact with and regulate silencing by the Sin3-Rpd3 hitone deacetlyase. EMBO J. 19, 3739-3749 https://doi.org/10.1093/emboj/19.14.3739
- Arevalo-Rodriguez, M. and J. Heitman. 2005. Cyclophilin A is localized to the nucleus and controls meiosis in Saccharomyces cerevisiae. Eukaryotic Cell 4, 17-29 https://doi.org/10.1128/EC.4.1.17-29.2005
- Arevalo-Rodriguez, M., X. Wu, S.D. Hanes, and J. Heitman. 2004. Prolyl isomerase in yeast. Front. Biosci. 9, 2420-2446 https://doi.org/10.2741/1405
- Bona, E., F. Marsano, M. Cavaletto, and G. Berta. 2007. Proteomic characterization of copper stress response in Canabis sativa roots. Proteomics 7, 1121-1130 https://doi.org/10.1002/pmic.200600712
- Brown, C.R., D.Y. Cui, G.G.C. Hung, and H.L. Chiang. 2001. Cyclophilin A mediates Vid22p function in the import of fructose- 1,6-biphosphatase into vid vesicles. J. Biol. Chem. 276, 48017-48026 https://doi.org/10.1074/jbc.M109222200
- Cardenas, M.E., E. Lim, and J. Heitman. 1995. Mutations that perturb cyclophilin A ligand binding pocket confer cyclosporin A resistance in Saccharromyces cerevisiae. J. Biol. Chem. 270, 20997-21002 https://doi.org/10.1074/jbc.270.36.20997
-
Christian, G., L. Gilles, L. Jaekwon, J.M. Buhler, K. Sylvie, P. Michel, B. Helian, B.T. Michael, and L. Jean. 1998. The
$H_2O_2$ stimulon in Saccharomyces cerevisiae. J. Biol. Chem. 273, 22480-22489 https://doi.org/10.1074/jbc.273.35.22480 - Davidson, J.F., B. Whyte, P.H. Bissinger, and R.H. Schiestl. 1996. Oxidative stress in involved in heat cell death in Saccharomyces cerevisiae. Proc. Natl. Acad. Sci. USA 93, 5116-5121
- Delgado, M.L., J.E. O'Connor, I. Azorin, J. Renau-Piqueras, M.L. Gil, and D. AGozallo. 2001. The glyceraldehyde-3-phosphate dehydrogenase polypeptides encoded by the Saccharomyces cerevisiae TDH1, TDH2, and TDH3 genes are also cell wall proteins. Microbiology 147, 411-417 https://doi.org/10.1099/00221287-147-2-411
- de Olivaria, I.M., J.A. Henriques, and D. Bonatto. 2007. In silico identification of a new group of specific bacterial and fungal nitroreductases-like proteins. Biochem. Biophys. Res. Commun. 355, 919-925 https://doi.org/10.1016/j.bbrc.2007.02.049
- Dijck, P.V. and G.W. Walker. 2006. Physiological and molecular responses of yeasts to the environment, p. 111-152. In A. Querol and G.H. Fleet. (eds.), Yeasts in food and beverages, Springer Verlag, New York, USA
- Estrruch, F. 2000. Stress-controlled transcription factors, stress-induced genes and stress tolerance in budding yeast. FEMS Microbiol. Rev. 24, 469-486 https://doi.org/10.1111/j.1574-6976.2000.tb00551.x
- Galat, A. and S.M. Metcalfe. 1995. Peptidyl proline cis/trans isomerase. Prog. Biophys. Mol. Biol. 63, 67-118 https://doi.org/10.1016/0079-6107(94)00009-X
- George, R., T. Beddoe, K. Landl, and T. Lithgow. 1998. The yeast nascent polypeptide-associated complex initiates protein targeting to mitochondria in vivo. Proc. Natl. Acad. Sci. USA 95, 2296-2301
- Kim, I.S., H.S. Yun, I.S. Park, H.Y. Sohn, H. Iwahashi, and I.N. Jin. 2006. A knockout strain of CPR1 induced during fermentation of Saccharomyces cerevisiae KNU5377 is susceptible to various types of stress. J. Biosci. Bioeng. 102, 288-296 https://doi.org/10.1263/jbb.102.288
- Lee, J., C. Godon, G. Langiel, D. Spector, J. Garin, J. Labarre, and M.B. Toledano. 1999. Yap1 and Skn7 control two specialized oxidative stress response regulons in yeast. J. Biol. Chem. 274, 16040-16046 https://doi.org/10.1074/jbc.274.23.16040
- Lushchak, V.I. and D.V. Gospodaryov. 2005. Catalase protects cellular proteins from oxidative modification in Saccharomyces cerevisiae. Cell. Biol. Int. 29, 187-192 https://doi.org/10.1016/j.cellbi.2004.11.001
- Moskvina, E., C. Schuller, C.T. Maurer, W.H. Mager, and H. Ruis. 1998. A search in the genome of Saccharomyces cerevisiae for genes regulated via stress response elements. Yeast 14, 1041-1050 https://doi.org/10.1002/(SICI)1097-0061(199808)14:11<1041::AID-YEA296>3.0.CO;2-4
- Piper, P.W., B. Curran, M.W. Davies, A. Lockheart, and G. Reid. 1986. Transcription of the phosphoglycerate kinase gene of Saccharomyces cerevisiae increases when fermentative cultures are stressed by heat-shock. Eur. J. Biochem. 161, 525-531 https://doi.org/10.1111/j.1432-1033.1986.tb10474.x
- Reimann, B., J. Bradsher, J. Franke, F. Hartmann, M. Wiedmann, S. Prehn, and B. Wiedmann. 1999. Initial characterization of the nascent polypeptide-associated complex in yeast. Yeast 15, 397-407 https://doi.org/10.1002/(SICI)1097-0061(19990330)15:5<397::AID-YEA384>3.0.CO;2-U
- Rouhier, N. and J.P. Jacquot. 2005. The plant multigenic family of thiol peroxidase. Free Rad. Biol. Med. 38, 1413-1421 https://doi.org/10.1016/j.freeradbiomed.2004.07.037
- Sykes, K., M. Gething, and J. Sambrook. 1993. Proline isomerases function during heat shock. Proc. Natl. Acad. Sci. USA 90, 5853-5857
- Tucker, C.L. and S. Fields. 2004. Quantitative genome-wide analysis of yeast deletion strain sensitivities to oxidative and chemical stress. Comp. Funct. Genom. 5, 216-224 https://doi.org/10.1002/cfg.391
- Wang, P. and J. Heitman. 2005. The cyclophilins. Genome Biol. 6, 226.1-226.6 https://doi.org/10.1186/gb-2005-6-4-p6
- Zanei, C.F., A.L. Maragno, A.P. Gregio, S. Komili, J.R. Pandolfi, C.A. Mestriner, W.R. Lustri, and S.R. Valentini. 2006. eIF5A binds to translational machinery components and affects translation in yeast. Biochem. Biophys. Res. Commun. 348, 1358-1366 https://doi.org/10.1016/j.bbrc.2006.07.195