Phosphate and Carbon Source Regulation of Alkaline Phosphatase and Phospholipase in Vibrio vulnificus

  • 발행 : 2007.08.30

초록

In this study, the effects of phosphate concentration and carbon source on the patterns of alkaline phosphatase (APase) and phospholipase (PLase) expression in Vibrio vulnificus ATCC 29307 were assessed under various conditions. The activities of these enzymes were repressed by excess phosphate (4 mM) in the culture medium, but this repression was reversed upon the onset of phosphate starvation in low phosphate defined medium (LPDM) containing 0.2 mM of phosphate at approximately the end of the exponential growth phase. The expressions of the two enzymes were also influenced by different carbon sources, including glucose, fructose, maltose, glycerol, and sodium acetate at different levels. The APase activity was derepressed most profoundly in LPDM containing fructose as a sole carbon source. However, the repression/derepression of the enzyme by phosphate was not observed in media containing glycerol or sodium acetate. In LPDM-glycerol or sodium acetate, the growth rate was quite low. The highest levels of PLase activity were detected in LPDM-sodium acetate, followed by LPDM-fructose. PLase was not fully repressed by high phosphate concentrations when sodium acetate was utilized as the sole carbon source. These results showed that multiple regulatory systems, including the phosphate regulon, may perform a function in the expression of both or either APase and PLC, in the broader context of the survival of V. vulnificus.

키워드

참고문헌

  1. Barker, A.P., A.I. Vasil, A. Filloux, G. Ball, P.J. Wilderman, and M.L. Vasil. 2004. A novel extracellular phospholipase C of Pseudomonas aeruginosa is required for phospholipid chemotaxis. Mol. Microbiol. 53, 1089-1098 https://doi.org/10.1111/j.1365-2958.2004.04189.x
  2. Berka, R.M., G.L. Gray, and M.L. Vasil. 1981. Studies of phospholipase C (heat-labile hemolysin) in Pseudomonas aeruginosa. Infect. Immun. 34, 1071-1074
  3. Blake, P.A., M.H. Merson, R.E. Weaver, D.G. Hollis, and P.C. Heublein. 1979. Disease caused by a marine Vibrio. Clinical characteristics and epidemiology. N. Engl. J. Med. 300, 1-5 https://doi.org/10.1056/NEJM197901043000101
  4. Broich, M., K. Rydzewski, T.L. McNealy, R. Marre, and A. Flieger. 2006. The global regulatory proteins LetA and RpoS control phospholipase A, lysophospholipase A, acyltransferase, and other hydrolytic activities of Legionella pneumophila JR32. J. Bacteriol. 188, 1218-1226 https://doi.org/10.1128/JB.188.4.1218-1226.2006
  5. Gray, G.L., R.M. Berka, and M.L. Vasil. 1982. Phospholipase C regulatory mutation of Pseudomonas aeruginosa that results in constitutive synthesis of several phosphate-repressible proteins. J. Bacteriol. 150, 1221-1226
  6. Guddal, P.H., T. Johansen, K. Schulstad, and C. Little. 1989. Apparent phosphate retrieval system in Bacillus cereus. J. Bacteriol. 171, 5702-5706 https://doi.org/10.1128/jb.171.10.5702-5706.1989
  7. Gulig, P.A., K.L. Bourdage, and A.M. Starks. 2005. Molecular pathogenesis of Vibrio vulnificus. J. Microbiol. 43, 118-131
  8. Hulett, F.M. and K. Jensen. 1988. Critical roles of spoOA and spoOH in vegetative alkaline phospahtase production in Bacillus subtilis. J. Bacteriol. 170, 3765-3768 https://doi.org/10.1128/jb.170.8.3765-3768.1988
  9. Hulett, F.M., E.E. Kim, C. Bookstein, N.V. Kapp, C.W. Edwards, and H.W. Wyckoff. 1991. Bacillus subtilis alkaline phosphatases III and IV: Cloning, sequencing and comparisons of deduced amino acid sequence with Escherichia coli alkaline phosphatase 3-D structure. J. Biol. Chem. 266, 1077-1084
  10. Hulett, F.M., K. Stuckmann, D.B. Spencer, and T. Sanopoulou. 1986. Purification and characterization of the secreted alkaline phosphatase of Bacillus licheniformis MC14: identification of a possible precursor. J. Gen. Microbiol. 132, 2387-2395
  11. Kirschnek, S. and E. Gulbins. 2006. Phospholipase A2 functions in Pseudomonas aeruginosa-induced apoptosis. Infect. Immun. 74, 850-860 https://doi.org/10.1128/IAI.74.2.850-860.2006
  12. Kurioka, S. and M. Matsuda. 1976. Phospholipase C assay using p-nitrophenylphosphorylcholine together with sorbitol and its application to studying the metal and detergent requirement of the enzyme. Anal. Biochem. 75, 281-289 https://doi.org/10.1016/0003-2697(76)90078-6
  13. Kuroshima, T. and K. Hayano. 1982. Phospholipase C activity in soil. Soil Sci. Plant. Nutr. 28, 535-542 https://doi.org/10.1080/00380768.1982.10432393
  14. Lee, J.K., C.W. Edwards, and F.M. Hulett. 1991. Bacillus licheniformis APase I gene promoter : a strong well-regulated promoter in B. subtilis. J. Gen. Microbiol. 137, 1127-1133 https://doi.org/10.1099/00221287-137-5-1127
  15. Linkous, D.A. and J.D. Oliver. 1999. Pathogenesis of Vibrio vulnificus. FEMS Microbiol. Lett. 174, 207-214 https://doi.org/10.1111/j.1574-6968.1999.tb13570.x
  16. McCarter, L.L. and M. Silverman. 1987. Phosphate regulation of gene expression in Vibrio parahaemolyticus. J. Bacteriol. 169, 3441-3449 https://doi.org/10.1128/jb.169.8.3441-3449.1987
  17. Mengaud, J., C. Braun-Brenton, and P. Cossart. 1991. Identification of phosphatidylinositol specific phospholipase C activity in Listeria monocytogenes: novel type of virulence factor? Mol. Microbiol. 5, 367-372 https://doi.org/10.1111/j.1365-2958.1991.tb02118.x
  18. Ostroff, R.M. and M.L. Vasil. 1987. Identification of a new phospholipase C activity by analysis of an insertional mutation in the hemolytic phospholipase C structural gene of Pseudomonas aeruginosa. J. Bacteriol. 169, 4597-4601 https://doi.org/10.1128/jb.169.10.4597-4601.1987
  19. Pal, S., B. Guhathakurta, D. Sasmal, R. Mallick, and A. Datta. 1997. Purification and characterization of a hemolysin with phospholipase C activity from Vibrio cholerae O139. FEMS Microbiol. Lett. 147, 115-120 https://doi.org/10.1111/j.1574-6968.1997.tb10229.x
  20. Portnoy, D.A., S.L. Moseley, and S. Falkow. 1981. Characterization of plasmids and plasmid-associated determinants of Yersinia enterocolitica pathogenesis. Infect. Immun. 31, 775-792
  21. Puri-Taneja, A., P. Salbi, Y. Chen, and F.M. Hulett. 2006. CcpA Causes repression of the phoBR promoter through a novel transcription start site, $P_{A6}$. J. Bacteriol. 188, 1266-1278 https://doi.org/10.1128/JB.188.4.1266-1278.2006
  22. Sage, A.E. and M.L. Vasil. 1997. Osmoprotectant-dependent expression of plcH, encoding the hemolytic phospholipase C, is subject to novel catabolite repression control in Pseudomonas aeruginosa PAO1. 1997. J. Bacteriol. 179, 4874-4881 https://doi.org/10.1128/jb.179.15.4874-4881.1997
  23. Schmiel, D., G.M. Young, and V.L. Miller. 2000. The Yersinia enterocolitica phospholipase gene yplA is part of the flagellar regulon. J. Bacteriol. 182, 2314-2320 https://doi.org/10.1128/JB.182.8.2314-2320.2000
  24. Sinai, A.P. and P.M. Bavoil. 1993. Hyper-invasive mutants define a novel Pho-regulated invasion pathway in Escherichia coli. Mol. Microbiol. 10, 1125-1137 https://doi.org/10.1111/j.1365-2958.1993.tb00982.x
  25. Spencer, D.B., C.P. Chen, and F.M. Hulett. 1981. Effect of cobalt on synthesis and activation of Bacillus licheniformis phosphatase. J. Bacteriol. 145, 926-933
  26. Sun, G., S.M. Birkey, and F.M. Hulett. 1996. Three two-component signal transduction systems interact for Pho regulation in Bacillus subtilis. Mol. Microbiol. 19, 941-948 https://doi.org/10.1046/j.1365-2958.1996.422952.x
  27. Terao, M. and B. Mintz. 1987. Cloning and characterization of a cDNA coding for mouse placental alkaline phosphatase. Proc. Natl. Acad. Sci. USA 84, 7051-7055
  28. Testa, J., L.W. Daniel, and A.S. Kreger. 1984. Extracellular phospholipase $A_2$ and lysophospholipase produced by Vibrio vulnificus. Infect. Immun. 45, 458-463
  29. Titball, R.W. 1993. Bacterial phospholipases C. Microbiol. Rev. 57, 347-366
  30. Trowsdale, J., D. Martin, D. Bicknell, and I. Campbell. 1990. Alkaline phosphatases. Biochem. Soc. Trans. 18, 178-180 https://doi.org/10.1042/bst0180178
  31. Villarejo, M., J.L. Davis, and S. Granett. 1983. Osmoregulation of alkaline phosphatase synthesis in Escherichia coli K-12. J. Bacteriol. 156, 975-978
  32. Wanner, B.L. 1993. Gene regulation by phosphate in enteric bacteria. J. Cell. Biochem. 51, 47-54 https://doi.org/10.1002/jcb.240510110
  33. Wanner, B.L., M.R. Wilmes, and D.C. Young. 1988. Control of bacterial alkaline phosphatase synthesis and variation in an Escherichia coli K-12 phoR mutant by adenyl cyclase, the cyclic AMP receptor protein, and the phoM operon. J. Bacteriol. 170, 1092-1102 https://doi.org/10.1128/jb.170.3.1092-1102.1988
  34. Weiss, M.J., K. Ray, P.S. Henthorn, B. Lamb, T. Kadesch, and H. Harris. 1988. Structure of the human liver/bone/kidney alkaline phosphatase gene. J. Biol. Chem. 263, 12002-12010