DOI QR코드

DOI QR Code

FRP 보강 철근콘크리트기둥의 변위계수법에 의한 내진성능설계기법 개발

Development of Performance-Based Seismic Design of RC Column Using FRP Jacket by Displacement Coefficient Method

  • 조창근 (경북대학교 건설공학부, BK21 미래지향 글로벌 방재 전문인력 양성 사업단) ;
  • 하기주 (경일대학교 건축학부) ;
  • 배수호 (안동대학교 토목공학과)
  • Cho, Chang-Geun (BK21, School of Architecture and Civil Eng., Kyungrook National University) ;
  • Ha, Gee-Joo (Dept. of Architectural Engineering, Kyungil University) ;
  • Bae, Su-Ho (Dept. of Civil Engineering, Andong rational University)
  • 발행 : 2007.08.31

초록

본 연구에서는, FRP 피복 보강에 의한 철근콘크리트 구조물의 변위-기반 내진성능설계 기법을 제시하였다. FRP 피복 콘크리트 부재에 대한 비선형 휨 해석을 위한 정밀 예측을 위하여 콘크리트 및 FRP 복합재료의 다축 구성관계를 고려한 해석 모델을 제시하였다. FRP 피복 보강에 의한 내진성능설계를 위하여 기존 철근콘크리트 구조물에 적용하던 변위계수법에 의한 방법을 개선하여 성능 개선 부재의 FRP 보강 두께 결정을 위한 알고리즘을 제시하였다. 대상부재의 성능 개선 설계 적용을 통하여, 본 연구에서 제시된 방법은 성능 개선 설계에 적용하는데 쉽고 용이할 뿐만 아니라 성능 개선된 부재에 대한 비선형 지진 성능 거동을 추정하는데도 실용적인 것으로 평가된다.

In the current research, the scheme of displacement-based seismic design for seismic retrofit of concrete structures using FRP composite materials has been proposed. An algorithm of the nonlinear flexural analysis of FRP composite concrete members has been presented under multiaxial constitutive laws of concrete and composite materials. An algorithm for performance-based seismic retrofit design of reinforced concrete columns with FRP jacket has been newly introduced to modify the displacement coefficient method used in reinforced concrete structures. From applications of retrofit design, the method are easy to apply in the practice of retrofit design and give practical prediction of nonlinear seismic performance evaluation of retrofitted structures.

키워드

참고문헌

  1. Cho, C. G et al., 'Analysis Model of Concrete- Filled Fiber-Reinforced Polymer Tubes Based on the Multi-Axial Constitutive Laws', Journal of Structural Engineering, ASCE, Vol.31, No.9, 2005, pp.1426-1433
  2. Davol, A, Burgueno, R., and Seible, F., 'Flexural Behavior of Circular Concrete Filled FRP Shells', Journal of Structural Engineering, ASCE, Vol.127, No.7, 2001, pp.810-817 https://doi.org/10.1061/(ASCE)0733-9445(2001)127:7(810)
  3. Fam, A., Flisak, B., and Rizkalla, S., 'Experimental and Analytical Investigations of Beam-Column Behavior of Concrete-Filled FRP Tubes', ACI Structural Journal, Vol.100, No.4, 2003, pp.499-509
  4. Mirmiran, A. and Shahawy, M., 'Behavior of Concrete Columns Confined by Fiber Composites', J. Structural Engineering, ASCE, Vol.123, No.5, 1997, pp.583-590
  5. Saadatmanesh, H. Ehsani, M. R., and Li, M. W., 'Strength and Ductility of Concrete Columns Externally Reinforced with Fiber Composite Straps', ACI Structural Journal, Vol.91, No.4, 1994, pp.434-447
  6. Kowalsky, M. J., Priestley, M. J. N., and MacRae, G. A., 'Displacement-Based Seismic Design of RC Bridge Columns in Seismic Regions', Earthquake Engineering and Structural Dynamics, Vol.24, 1995, pp.1623-1643 https://doi.org/10.1002/eqe.4290241206
  7. Calvi, G. M. and Kingsley, G. R., 'Displacement-Based Seismic Design of Multi- Degree-of-Freedom Bridge Structures', Earthquake Engineering and Structural Dynamics, Vol.24, 1995, pp.1247-1266 https://doi.org/10.1002/eqe.4290240906
  8. Freeman, S. A., 'Development and Use of Capacity Spectrum Method, Paper No. 269', The 6th US National Conference on Earthquake Engineering, EERI, Seattle, Washington, 1998
  9. Fajfar, P., 'Capacity Spectrum Method Based on Inelastic Demand Spectra', Earthquake Engineering and Structural Dynamics, Vol.28, 1999, pp.979-993 https://doi.org/10.1002/(SICI)1096-9845(199909)28:9<979::AID-EQE850>3.0.CO;2-1
  10. Applied Technology Council (ATC), Seismic Evaluation and Retrot of Concrete Building, Report ATC-40, Redwood City, California, 1996
  11. Chopra. A. K. and Goel, R. K., 'Direct Displacement-Based Design: Use of Inelastic Design Spectra versus Elastic Design Spectra', Earthquake Spectra, Vol.17, No.1, 2001, pp.47-64 https://doi.org/10.1193/1.1586166
  12. Federal Emergency Management Agency (FEMA), NEHRP Guidelinesfor the Seismic Rehabilitation of Buildings, Report FEMA 273 (Guidelines) and Report 274 (Commentary), Washington, D.C., 1997
  13. 조창근, 권민호, '3차원 구성관계를 고려한 FRP-구속 콘크리트의 압축 거동 예측 모델', 콘크리트학회 논문집, 16권 4호, 2004, pp.501-509
  14. Priestley, M.J.N., Seible, F., and Chai, Y.H. Design Guidelines for Assessment Retrofit and Repair of Bridges for Seismic Performance, Report SSRP-92/01, Univ. of California, San Diego, 1992
  15. 조창근, '3차원 구성관계를 FRP 콘크리트 복합 구조부재 시스템의 휨 및 전단 거동예측', 대한건축학회 논문집, 20권 8호, 2004, pp.35-42
  16. Cho, C. G. et al., 'Flexural Model for FRP Concrete Structural Members Using Three-Dimensional Constitutive Law of Concrete', Engineering Structures, 2007, in Press
  17. Mander, J. B., Priestely, M. J. N., and Park, R., 'Theoretical Stress-strain Model for Confined Concrete', J of Structural Division, ASCE, Vol.114, No.8, 1988, pp.1804-1826 https://doi.org/10.1061/(ASCE)0733-9445(1988)114:8(1804)
  18. Priestley, M. J. N., Seible, F., and Calvi, G. M., Seismic Design and Retrofit of Bridges, John Wiley & Sons, New York, 1996
  19. Priestley, M.J.N. and Seible, F., Seismic Assessment and Retrofit of Bridges, Report SSRP-91/103, Univ. of California, San Diego, 1991
  20. Federal Emergency Management Agency (FEMA), Standard and Commentary for the Seismic Rehabilitation of Buildings, Report FEMA 356, Washington, D.C., 2000

피인용 문헌

  1. Nonlinear Analysis of FRP Strengthened Reinforced Concrete Columns by Force-Based Finite Element Model vol.25, pp.5, 2013, https://doi.org/10.4334/JKCI.2013.25.5.529