Abstract
Critical chloride content for corrosion initiation is a crucial parameter in determining the durability and integrity of reinforced concrete structures, however, the value is still ambiguous. Most of the studies reporting critical threshold chloride content have involved the experimental measurement of the average amount of the total chloride content at arbitrary time. The majority of these researches have not dealt with this issue combined with carbonation of concrete, although carbonation can significantly impact on critical threshold chloride content. Furthermore, the studies have tried to define the critical chloride content within the scope of their experimental concrete mix proportion at arbitrary time. However, critical chloride content for corrosion initiation is known to be affected by a lot of factors including cement content, type of binder, chloride binding, concentration of hydroxyl ions, and so on. It is necessary to define the unified formulation to express the critical chloride content for various mix proportions of concrete. The purpose of this study is to establish an analytical formulation of the critical chloride content of concrete. In this formulation, affecting factors, such as mix proportion, environment, chemical evolution of pore solution with elapsed time, carbonation of concrete and so on are taken into account. Based on the Gouda's experimental results, critical chloride content is defined as a function of $[Cl^-]$ vs. $[OH^-]$ in pore solution. This is expressed as free chloride content with mass unit to consider time evolution of $[OH^-]$ content in pore solution using the numerical simulation programme of cementitious materials, HYMOSTRUC. The result was compared with other experimental studies and various codes. It is believed that the approach suggested in this study can provide a good solution to determine the reasonable critical chloride content with original source of chloride ions, for example, marine sand at initial time, and sea water penetration later on.
철근의 부식을 유발하는 임계 염소이온량에 대한 연구는 콘크리트 구조물의 건전성을 판단하고 내구성 설계 기법에 필요한 핵심적인 재료 물성치 임에도 그값이 아직도 모호한 실정이다. 임계 염소이온량에 대한 대부분의 문헌들은 임의의 시간에 실험적 방법에 의하여 전 염소이온량을 구하는데 집중하였다 또한, 다수의 문헌들은 대다수의 콘크리트에서 탄산화가 진행되고 있음에도 비탄산화된 콘크리트를 대상으로 실험하여 임계 염소이온량을 결정하고 있다. 그러나, 임계 염소이온량은 시멘트량, 시멘트계 재료의 종류, 염소이온의 고정화, 수산기이온 등과 같은 다양한 인자에 의하여 지배된다. 그러므로 다양한 배합조건에서 이러한 인자들을 고려할 수 있는 단일화된 해석적 기법의 개발이 필요하다. 본 연구의 목적은 이러한 다양한 요인을 고려하여 임계 염소이온량의 해석적 기법을 개발하는 것이다. 배합 조건, 노출 환경, 공극수의 화학적 발현 특성, 탄산화 등과 같은 다양한 인자들이 고려되었다. Gouda의 실험적 결과인 공극수내의 $[Cl^-]/[OH^-]$의 비율을 토대로 임계 염소이온량을 구할 수 있는 해석 기법이 정립되었다. 이는 시멘트계 재료의 수화 시뮬레이션 프로그램인 HYMOSTRUC을 이용하여 질량 단위로 구해졌으며 발표된 실험적 결과 및 관련코드와 비교되었다. 본 연구의 접근 방법은 해사 혹은 해수와 같은 염소이온의 도입원 조건에 따라서 임계 염소이온량을 결정할 수 있는 합리적 해를 제공해줄 수 있을 것으로 기대된다.