DOI QR코드

DOI QR Code

Electricity Generation from Volatile Fatty Acids (VFAs) Using a Microbial Fuel Cell

휘발성지방산으로부터 미생물연료전지에 의한 전기 생산

  • Oh, S.E. (Department of Biological Environment, Kangwon National University) ;
  • Kim, S.J. (Department of Biological Environment, Kangwon National University) ;
  • Yang, J.E. (Department of Biological Environment, Kangwon National University) ;
  • Jung, Y.S. (Department of Biological Environment, Kangwon National University)
  • 오상은 (강원대학교 자원생물환경학과) ;
  • 김수정 (강원대학교 자원생물환경학과) ;
  • 양재의 (강원대학교 자원생물환경학과) ;
  • 정영상 (강원대학교 자원생물환경학과)
  • Published : 2007.06.30

Abstract

A new technology that utilizes a microbial fuel cell (MFC) has been developed to generate electricity directly from the oxidation of organic matters such as carbohydrates or complex organics in wastewater. Fermentation of these organic matters results in production of volatile fatty acids (VFAs), alcohols, $CO_2$ and $H_2$. We investigated the electricity-producing potential of the VFAs and actual food processing wastewater using a two-chambered MFC. The electrons produced by acetate degradation were proportional to acetate concentration in the medium. Acetate concentration and generated power were linearly correlated at a low range or acetate concentration (< 8 mg/L), but at above 8 mg/L of acetate the power produced was maintained at 0.1 mW. When butyrate was added to the anode acclimated to acetate, there was a lag period of 30 hr for electricity generation. However, when propionate was added to the same anode bottle, lag periods were not existed. The wastewater from baby food processing generated the maximum power density of $81{\pm}7\;mW/m^2$ of electricity and exhibited the Coulombic efficiencies of 27.1% and 40.5% based on TCOD and SCOD, respectively. Sugars in the food processing wastewater were reduced within 50 h from 230 mg/L < 30 mg/L.

미생물연료전지는 유기성 폐기물을 처리하면서 동시에 전기에너지를 얻을 수 있다는 측면에서 커다란 장점을 가지고 있다. 대부분의 유기성폐기물들이 발효과정을 거치면서 고농도의 VFAs가 생성되므로 미생물연료전지가 이들 VFAs로부터 전기를 얻을 수 있는지 알아보는 것은 아주 중요하다. 따라서 본 연구에서는 acetate, propionate, butyrate 및 실제 폐수인 식품가공폐수로부터 미생물 연료전지를 이용하여 전기발생 여부를 알아보았으며 다음과 같은 결론을 얻었다. 미생물연료전지를 이용하여 VFAs(acetate, propionate, butyrate)와 식품가공폐수로부터 전기를 얻을 수 있었고 투여한 acetate 농도에 비례하여 cathode로 전달되는 전자(Coulomb)는 비례하였다. 낮은 농도의 acetate에서 발생파워와 acetate 농도 사이에는 비례관계를 보였다. 이는 미생물연료전지가 낮은 농도의 유기물을 측정하는 센서로서의 가능성을 보여준다. acetate에 순화된 산화전극에 butyrate를 넣었을 때 순화의 시간이 필요하였으며 일정 순화시간 후 voltage가 증가하였다. 그러나 propionate를 넣었을 때는 순화시간 없이 급격하게 voltage가 상승하였다. 따라서 미생물연료전지의 생성파워가 향상된다면 유기성 폐기물을 처리하면서 실생활에 이용할 수 있는 전기로 변환하는 장치로서 이용될 수 있을 것으로 판단된다.

Keywords

References

  1. Ministry of Environment. (2004) Statistics yearbook, Republic of Korea
  2. Wen, C., Huang, X., and Qian, Y. (1999) Domestic wastewater treatment using an anaerobic bioreactor coupled with membrane filtration, Process Biochem. 35, 335-340 https://doi.org/10.1016/S0032-9592(99)00076-X
  3. Water Environment Research Foundation. (1999) Research needs to optimize wastewater resource utilization. Project 98-CTS-1. 4-5
  4. Grady, C. P. L., Daigger, G. T., and Lim, H. C. (1999) Biological wastewater treatment: Biological nutrient removal. Marcel Dekker, Inc. New York, USA, p.487
  5. Bond, D. R., Holmes, D. E., Tender, L. M., and Lovley, D. R. (2002) Electrode-reducing microorganisms that harvest energy from marine sediments, Science 295, 483-485 https://doi.org/10.1126/science.1066771
  6. Liu, H., Ramnarayanan, R., and Logan, B. E. (2003) Production of electricity during wastewater treatment using a single chamber microbial fuel cell, Environ. Sci. Technol. 38, 2281-2285 https://doi.org/10.1021/es034923g
  7. Oh, S., Min, B., and Logan, B. E. (2004) Cathode performance as a factor in electricity generation in microbial fuel cells, Environ. Sci. Technol. 38, 4900-4904 https://doi.org/10.1021/es049422p
  8. Cai, M., Liu, J., and Wei, Y. (2004) Enhanced biohydrogen production from sewage sludge with alkaline pretreatment, Environ. Sci. Technol. 38, 3195-3202 https://doi.org/10.1021/es0349204
  9. van Ginkel, S. W. and Logan, B. E. (2005) Increased biological hydrogen production with reduced organic loading, Water Research 39, 3819-3826 https://doi.org/10.1016/j.watres.2005.07.021
  10. Park, W., Hyun, S. H., Logan, B. E., and Kim, I. S. (2005) Removal of headspace $CO_2$ increases biological hydrogen production, Environ. Sci. Technol. 39, 4416-4420 https://doi.org/10.1021/es048569d
  11. Nandi, R. and Sengupta, S. (1998) Microbial production of hydrogen: an overview, Crii. Rev. Microbiol. 24 (1), 61-84 https://doi.org/10.1080/10408419891294181
  12. Benemann, J. (1996) Hydrogen biotechnology: Progress and prospects, Nature Biotech. 14, 1101-1103 https://doi.org/10.1038/nbt0996-1101
  13. Liu, H. and Logan, B. E. (2004) Electricity generation using an air cathode single chamber microbial fuel cell in the presence and absence of a proton exchange membrane, Environ. Sci. Technol. 38, 4040-4046 https://doi.org/10.1021/es0499344
  14. Kim, J. R., Cheng, S., Oh, S.-E., and Logan, B. E. (2007) Power generation using different cation, anion and ultrafiltration membranes in microbial fuel cells, Environ. Sci. Technol. 41 (3), 1004-1009 https://doi.org/10.1021/es062202m
  15. Dubois, M., Gilles, K. A., Hamilton, J. K., Rebers, P. A., and Smith, F. (1956) Colorimetric method for determination of sugars and related substances, Anal. Chem. 28 (3), 350-356 https://doi.org/10.1021/ac60111a017
  16. American Public Health Association. (1995) Standard Methods for the Examination of Water and Wastewater. 18th edition. American Public Health Association. Washington DC, USA