Molecular Markers and Their Application in Mulberry Breeding

  • Published : 2007.12.31

Abstract

Mulberry (Morus spp.) is an economically important tree crop being cultivated in India, China and other sericulturally important countries for its foliage to feed the silk producing insect Bombyx mori L. Genetic improvements of mulberry lag behind to the same in many other economically less important crops due to the complexity of its genetics, the breeding behavior, and the lack of basic information on factors governing important agronomic traits. In this review, the general usage and advantages of different molecular markers including isoenzymes, RFLPs, RAPDs, ISSRs, SSRs, AFLPs and SNPs are described to enlighten their applicability in mulberry genetic improvement programs. Application of DNA markers in germplasm characterization, construction of genetic linkage maps, QTL identification and in marker-assisted selection was also described along with its present status and future prospects.

Keywords

References

  1. Aggarwal, R. and D. Udaykumar (2004) Isolation and characterization of six novel microsatellite markers for mulberry (Morus indica). Molecular Ecology Notes 4, 477-479 https://doi.org/10.1111/j.1471-8286.2004.00718.x
  2. Akagi, H., Y.Yokozeki, A. Inagaki, A. Nakamura, and T. Fujimura (1996) A co-dominant DNA marker closely linked to the rice nuclear restorer gene, Rf-I, identified with inter- SSR fingerprinting. Genome 39, 1205-1209 https://doi.org/10.1139/g96-152
  3. Awasthi, A. K., G. M.Nagaraja, G.V. Naik, S. Kanginakudru, K. Thangavelu and J. Nagaraju (2004) Genetic diversity in mulberry (genus Morus) as revealed by RAPD and ISSR marker assays. BMC genetics 5, 1
  4. Basten, C. J., B. S. Weir and Z-B.Zeng, (1998) QTL cartographer a reference manual and tutorial for QTL mapping, Department of Statistics North Carolina State Univesity (on disk)
  5. Bhattacharya, E., and S. A. Ranade (2001) Molecular distinction among varieties of Mulberry using RAPD and DAMD profiles. BMC Plant Biol. 3, 1
  6. Blair, M. W., O. Panaud and S. R. McCouch (1999) Inter-simple sequence repeat (lSSR) amplification for analysis of microsatellite motif frequency and fingerprinting in rice (Oryza sativa L). Theor. Appl. Genet. 98, 780-792 https://doi.org/10.1007/s001220051135
  7. Bornet, B., F. Goraguer G. Joly, and G. Branchard (2002) Genetic diversity in European and Argentinean cultivated potatoes (Solanum tuberosum subsp. tuberosum) detected by inter-simple sequence repeats (ISSRs). Genome 45, 481-484 https://doi.org/10.1139/g02-002
  8. Bradshaw, H. D. Jr., M. Villar, B. D.Watson, K. G. Otto, S. Stewart and R. F. Stettler, (1994) Molecular genetics of growth and development in Populs III. A genetic linkage map of a hybrid popular composed of RFLP STS and RAPD Markers Theor. Appl. Genet. 89, 167-178
  9. Brandis, D. (1874) The forest flora of northwest and central India; in Indian trees. pp. 407-410, William H. Allen & Co., London
  10. Breyne, P., W. Boerjan, T. Gerats, M. Van Montagu and A.Van Gysel (1997). Applications of AFLP in plant breeding, molecular biology and genetics. Belgian J. Bot. 129, 107-117
  11. Carlson, J. E., L. K. Tulsieram, J. C. Glaubitz, V. W. K. Luk, C. Kauffeldt, and R. Rutledge (1991) Segregation of random amplified DNA markers in F1 progeny of conifers. Theor. Appl. Genet., 83, 194-200
  12. Chatterjee, S. N., G. M. Nagaraja, P. P.Srivastava, and G.Naik (2004) Morphological and molecular variation of Morus laevigata in India. Genetica 39, 1612-1624
  13. Chee, M., R.Yang, E. Hubbell, A. Berno, X. C. Huang, D. Stern, J. Winkler, D. J. Lockhart, M.S. Morris and S. P. Fodor (1996) Accessing genetic information with high-density DNA arrays, Science 274, 610-614 https://doi.org/10.1126/science.274.5287.610
  14. Coffman, C. J., R. W. Doerge, M. L. Wayne, and L. M. McIntyre (2003) Intersection tests for single marker QTL analysis can be more powerful than two marker QTL analysis. BMC Genetics 4, 10 https://doi.org/10.1186/1471-2156-4-10
  15. D'Ovido, R and O. P.Anderson (1994) PCR analysis to distinguish between alleles of a member of multigene family correlated with wheat bread-making quality. Theor. Appl. Genet. 88, 759-763 https://doi.org/10.1007/BF01253982
  16. Das, B.C. and S. Krishnaswami, (1965) Some observations on inter-specific hybridization in mulberry. Indian J. Sericult. 4, 1-4
  17. Datta R. K. (2000) Mulberry Cultivation and Utilization in India. FAO Electronic conference on mulberry for animal production (Morus-L) (on disk)
  18. Ercisli, S. (2004) A short review of the fruit germplasm resources of Turkey. Genet. Resour. Crop Evol, 51, 419-435 https://doi.org/10.1023/B:GRES.0000023458.60138.79
  19. Fang, D.Q and M. L. Roose (1997) Identification of closely related citrus cultivars with inter-simple sequence repeat markers. Theor. Appl. Genet. 95, 408-417 https://doi.org/10.1007/s001220050577
  20. Fazuoli, L.C., M. P. Maluf, O. G. Filho, H. M. Filho, and M. B. Silvarolla (2000) Breeding and Biotechnology of coffee; in Coffee biotechnology and quality, (Sera, T., Soccol, C.R., Pandey, A. and Roussos, S.), pp. 27-45, Kluwer Academic Publishers, Dordrecht
  21. Feng, L. C, Y. Guangwei, Y. Maode, K. Yifu, J. Chenjun, Y. Zhonghuai, (1996) Studies on the genetic identities and relationships of mulberry cultivated species (Morus L.) by a random mplified polymorphic DNA assay. Acta Sericologic Sinica, 22, 135-139
  22. Fischer, S. G. and L. S. Lerman, (1979) Length-independent separation of DNA restriction fragments in two-dimensioanl gel electrophoresis. Cell 16, 191-200 https://doi.org/10.1016/0092-8674(79)90200-9
  23. Gao, Z. S., W. E. van de Weg, J. G. Schaart, H. J. Schouten, D. H. ran, L. P. Kodde, I. M. van der Meer, A. H. M. van der Geest, J. Kodde, H. Breiteneder, K. Hoffmann-Sommergruber, D. Bosch, and L. J. W. J. Gilissen (2005) Genomic cloning and linkage mapping of the Mal d 1 (PR-10) gene family in apple (Malus domestica). Theor. Appl. Genet. 111, 171- 183 https://doi.org/10.1007/s00122-005-2018-4
  24. Gerasopoulos, D. and G. Stavroulakis (1997) Quality characteristics of four mulberry (Morus spp.) cultivars in the area of Chania Greece. J. Sci. Food Agricult. 73, 261-264 https://doi.org/10.1002/(SICI)1097-0010(199702)73:2<261::AID-JSFA724>3.0.CO;2-S
  25. Grattapaglia, D., and R.Sederoff (1994) Genetic linkage maps ofEucalyptus grandis and Eucalyptus urophylla using a pseudotestcross mapping strategy and RAPD markers. Genetics 137, 1121-1137
  26. Grattapaglia, D., F. L. G. Bertolucci, R. Penchel and R. Sederoff (1996) Genetic mapping of quantitative trait loci controlling growth and wood quality traits in Eucalyptus grandis using a maternal half-sib family and RAPD markers Genetics, 144, 1205-1214
  27. Groover, A., M. Devey, T. Fiddler, J. Lee, W. R. Megra, T. Mitchet-Olds, B. Herman, S. Vujere, C. Williams and D. Neale, (1994) Identification of quantitative trait loci influencing wood specific gravity in an out bred pedigree of loblolly pine Genetics 138, 1293-1300
  28. Gupta, M., Y-S. Chyi, J. Romero-Severson and J. L. Owen (1994) Amplification of DNA markers from evolutionarily diverse genomes using single primers of simple-sequence repeats. Theor. Appl. Genet. 89, 998-1006
  29. Halward, T., T. Stalker, E. LaRue and G. Kochert (1992) Use of single primer DNA amplifications in genetic studies of peanut (Arachis hypogaea L.). Plant Mol. Biol. 18, 315-325 https://doi.org/10.1007/BF00034958
  30. Hirano, H. (1982) Varietal differences of leaf protein profiles in mulberry. Phytochemistry 21, 1513-1518 https://doi.org/10.1016/S0031-9422(82)85008-5
  31. Hirano, H. and K. Naganuma (1979) Inheritance of peroxidase isozymes in mulberry (Morus spp) Euphytica 28, 73-80 https://doi.org/10.1007/BF00029175
  32. Hoeschele, L., P. Uimari, F. E. Grigola, and K. M. Zhang, (1997) Advances in statistical methods to map quantitative trait loci in outbred populations Genetics 147, 1445-1457
  33. Hooker, J. D. (1885) Flora of British India, pp. 491-493, Reeve and Company Ltd, The East House Book, Ashford, Kent, UK vol.V
  34. Hormaza, J. I. (2002) Molecular characterization and similarity relationships among apricot (Prunus armeniaca L.) genotypes using simple sequence repeats. Theor. Appl. Genet. 104, 321-328 https://doi.org/10.1007/s001220100684
  35. Huang, X.Q., A. Borner, M. S. Roder, and M. W. Ganal (2002) Assessing genetic diversity of wheat (Triticum aestivum L.) germplasm using microsatellite markers. Theor. Appl. Genet. 105, 699-707 https://doi.org/10.1007/s00122-002-0959-4
  36. Jones, C. J., K. J. Edwards, S. Castaglione, M.O. Winfield, F. Sala, C. Van de Wiel, G. Bredemeijer, B. Vosman, M. Matthes, A. Maly, R. Brettschneider, P. Bettini, M. Buiatti, E. Maestri, A. Malcevschi, N. Marmiroli, R. Aert, G. Volckaert, J. Rueda, R. Linaacero, A. Vazque and A. Karp (1997) Reproducibility testing of RAPD, AFLP and SSR markers in plants by a network of European laboratories. Molecular Breeding 3, 381-390 https://doi.org/10.1023/A:1009612517139
  37. Joshi, S. P., Y.S. Gupta, R. K. Aggarwal, P. K. Ranjekar and D.S. Brar (2000) Genetic diversity and phylogenetic relationship as revealed by inter-simple sequence repeat (ISSR) polymorphism in the genus Oryza. Theor. Appl. Genet. 100, 1311-1320 https://doi.org/10.1007/s001220051440
  38. Kar, P. K., P. P. Srivastava, A. K. Awasthi and S. Raje Urs (2007) Genetic variability and association of ISSR markers with some biochemical traits in mulberry (Morus spp.) genetic resources available in India, Tree Genetics and Genomes, DOI: 10.1007/s11295-007-0089-x
  39. Knapp, S. J. (1998) Marker-assisted selection as a strategy for increasing the probability of selecting superior genotypes. Crop Science 38, 1164-1174 https://doi.org/10.2135/cropsci1998.0011183X003800050009x
  40. Kochert, G. (1994) RFLP technology; in DNA based markers, ed. Phillips, R. L. and Vasil I. K., (eds.), pp. 8-38, Kluwer Academic Publishers, Dordrecht
  41. Koidzumi, G. (1917) Taxonomy and phytogeography of the genus Morus. Bull. Seric. Exp. Station, Tokyo (Japan) 3, 1-62
  42. Konieczny, A. and F. M.Ausubel (1993) A procedure for mapping Arabidopsis mutations using co-dominant ecotype-specific PCR based markers. The Plant J., 4, 403-410 https://doi.org/10.1046/j.1365-313X.1993.04020403.x
  43. Lanaud, C., Risterucci, A. M. , N'goran, J. A. K., Clément, D., Flament, M. H., Laurent, V. and Falque, M. (1995) A genetic linkage map of Theobroma cacao L. Theor Appl Genet. 91, 987-993
  44. Lander, E. S. and D. Botstein (1989) Mapping Mendelian factors underlying quantitative traits using RFLP linkage maps. Genetics 121, 185-199
  45. Lespinasse, D., M. Rodier-Goud, L. Grivet, A. Leconte, H. Legnate and M. Seguin (2000) A saturated genetic linkage map of rubber tree (Hevea spp.) based on RFLP, AFLP, microsatellite, and isozyme markers. Theor. Appl. Genet. 100, 127-138 https://doi.org/10.1007/s001220050018
  46. Levin, L. N., E. Gilboa, S. Yeselson, Shen, and A. .A Schaffer (2000) Fxr, a major locus that modulates the fructose to glucose ratio in mature tomato fruits. Theor. Appl. Genet. 100, 256-262 https://doi.org/10.1007/s001220050034
  47. Lin, J. Z and K. Ritland (1996) The effects of selective genotyping on estimates of the proportion of recombination between linked quantitative trait loci Theor. Appl. Genet. 93, 1261-1266 https://doi.org/10.1007/BF00223458
  48. Litt, M. and J. A. Luty (1989) A hypervariable microsatellite revealed by in vitro amplification of dinucleotide repeat within the cardiac muscle action gene. American J. Human Genet. 44, 397-401
  49. Liu, B. U. and S. J. Knapp (1997) QTL stat 1.0, a software for mapping complex traits using non-linear models CorvaIlis USA Oregon State University (on disk)
  50. Lou C. F., Y. Z. Zhang and J. M. Zhou (1998) Polymorphisms of genomic DNA in parents and their resulting hybrids in mulberry Morus. Sericologia 38, 437-445
  51. Luby, J. J. and D.V. Shaw, (2001) Does marker-assisted selection make dollars and sense in a fruit breeding program HortScience 36, 872-879
  52. Maliepaard, C., J. Jansen and J. W. Van Ooijen (1997) Linkage analysis in a full-sib family of an out breeding plant specie: overview and consequences for applications. Genet Res. 70, 237-250 https://doi.org/10.1017/S0016672397003005
  53. Markert, C. L. and F. Moller (1959), Multiple forms of enzymes: tissue ontogenetic and species specific patterns. Proc. Natl. Acad. Sci. USA. 45, 753-763
  54. Meyer, W., T. G. Mitchell, E. Z. Freedman and R. Vilgays, (1993) Hybridization probes for conventional DNA fingerprinting used as single primers in the polymerase chain reaction to distinguish strains of Cryptococcus neoformans. J. Clin. Microbiol 31, 2274-2280
  55. Miyashita, N.T., A. Kawabe and H. Innan, (1999) DNA variation in the wild plant Arabidopsis thaliana revealed by amplified fragment length polymorphism analysis. Genetics 152, 1723-1731
  56. Moeller, D. A. and B. A. Schaal, (1999) Genetic relationships among Native American maize accessions of Great Plains assessed by RAPDs. Theor. Appl. Genet. 99, 1061-1067 https://doi.org/10.1007/s001220051415
  57. Montarroyos, A.V.V. (2003) de Lima, M.A.G., dos Santos E.O. and de Franca, J.G. E., Isozyme analysis of an active cassava germplasm bank collection. Euphytica 130, 101-106 https://doi.org/10.1023/A:1022363122834
  58. Morell, M. K., R. Peakall, R. Appels, , Preston L. R. and H. L. Lloyd (1995) DNA profiling techniques for plant variety identification. Australian J. Experimental Agricult. 35, 807- 819 https://doi.org/10.1071/EA9950807
  59. Moreno, S., J. P. Martin and J. M. Ortiz (1998) Inter-simple sequence repeats PCR for characterization of closely related grapevine germplasm. Euphytica 101, 117-125 https://doi.org/10.1023/A:1018379805873
  60. Nagaoka, T. and Y. Ogihara (1997) Applicability of inter-simple sequence repeat polymorphisms in wheat for use as DNA markers in comparison to RFLP and RAPD markers. Theor. Apppl. Genet. 94, 597-602 https://doi.org/10.1007/s001220050456
  61. Orita, M. Iwahana, H., Kanazawa, H., Hayashi, K. and Sekiya, T., (1989) Detection of polymorphism of human DNA by gel electrophoresis as single-strand conformation polymorphisms. Proc. Natl. Acad. Sci. USA., 86, 2766-2770
  62. Pasakinskiene, I., C. M. Griffiths, A J. E. Bettany, Y. Paplauskiene and M. Humphreys W. (2000) Anchored simple- sequence repeats as primers to generate species-specific DNA markers in Lolium and Festuca grasses. Theor. Appl. Genet. 100, 384-390 https://doi.org/10.1007/s001220050050
  63. Plomion, C, D. M. O'Malley and C. E. Durel (1995) Genomic analysis inmaritime pine (Pinus pinaster). Comparison of two RAPD maps using selfed and open-pollinated seeds of the same individual.Theor Appl Genet. 90, 1028-1034
  64. Powell, W., M. Morgante, C. Andre, M. Hanafey, J.Vogel, S. Tingey and A. Rafalski (1996) The utility of RFLP, RAPD, AFLP and SSR (microsatellite) markers for germplasm analysis. Molecular Breeding 2, 225-238 https://doi.org/10.1007/BF00564200
  65. Rafalski, J. A. (1997) Randomly amplified polymorphic DNA (RAPD) analysis; in DNA markers protocols, applications and overviews ed. G. Caetano-Anolles and P.M. Gresshoff, (eds.), pp. 75-83, Wiley-Vch, New York
  66. Ratnaparkhe, M. B., M. Tekeoglu and F. J. Muehlbauer (1998) Inter simple- sequence-repeat (ISSR) polymorphisms are useful for finding markers associated with disease resistance gene clusters. Theor. Appl. Genet. 97, 515-519 https://doi.org/10.1007/s001220050925
  67. Ritter, E. and F. Salamini (1996) The calculation of recombination frequencies in crosses of allogamous plant species with applications to linkage mapping. Genet Res. 67, 55-65 https://doi.org/10.1017/S0016672300033474
  68. Ross, P., L. Hall, I. Smirnov and L. Haff (1998) High level multiplex genotyping by MALDI-TOF mass spectrometry. Nature Biotech. 16, 1347-1351 https://doi.org/10.1038/4328
  69. Salimath, S. S., A. E. de Oliveira, J. D. Godwin, and J. L. Bennetzen, (1995) Assessment of genome origins and genetic diversity in the genus Eleusine with DNA markers. Genome 38, 757-763 https://doi.org/10.1139/g95-096
  70. Sanjappa, M. (1989) Geographical distribution and exploration of the genus Morus L. (Moraceae). In: Sengupta K and Dandin SB (eds) Genetic resources of mulberry and utilization, pp. 4-7, Jwalamukhi Job Press, Bangalore, India
  71. Sankar, A. A. and G. A. Moore (2001) Evaluation of inter-simple sequence repeat analysis for mapping in Citms and extension of genetic linkage map. Theor. Appl. Genet. 102, 206-214 https://doi.org/10.1007/s001220051637
  72. Sharma, A., R. Sharma and H. Machii (2000) Assessment of genetic diversity in a Morus germplasm collection using fluorescence- based AFLP markers. Theor. Appl. Genet. 101, 1049-1055 https://doi.org/10.1007/s001220051579
  73. Snowdon, R. J. and W. Friedt (2004) Molecular markers in Brassica oilseed breeding: current status and future possibilities. Plant Breeding 123, 1-8 https://doi.org/10.1111/j.1439-0523.2003.00968.x
  74. Srivastava P. P., K. Vijayan, A. K. Awasthi, and B. Saratchandra (2004) Genetic analysis of Morus alba through RAPD and ISSR markers. Indian J. Biotech, 3, 527-532
  75. Syvanen, A. C, K. Alto-Setala, L. Harju, K. Kontula, and H. Soderlund (1990) A primer-guided nucleotide incorporation assay in the genotyping of apolipoprotein E. Genomics 8, 684-692 https://doi.org/10.1016/0888-7543(90)90255-S
  76. Tanksley, S.D. and T. J. Orton (1983) Isozymes; in plant genetics and breeding. Elsevier, Amsterdam
  77. Tikader, A. and S. B. Dandin (2006) Pre-breeding efforts to utilize two wild Morus species. Current Sci. 92, 1729-1733
  78. Tsumura, Y., K. Ohba, and S. H. Strauss, (1996) Diversity and inheritance of inter-simple sequence repeat polymorphisms in Douglasfir (Pseudotsuga menziesii) and sugi (Cryptomeria japonica). Theor. Appl. Genet. 92, 40-45 https://doi.org/10.1007/BF00222949
  79. Varshney, A., T. Mohapatra, and R. P. Sharma (2004) Molecular Mapping and Marker Assisted Seclection of traits for crop improvement; in Plant Biotechnology and Molecular Markers ed. Srivastava P. S, Narula, A. and Srivastava, S. (eds.), pp. 289-330, Kluwer Academia Publishers, Dordrecht, The Netherlands
  80. Venkateswarlu, M., S. Raje Urs, , B. S. Nath, H. E. Shashidhar, M. Maheswaran, T. M. Veeraiah, and M. G. Sabitha (2006) A first genetic linkage map of mulberry (Morus spp.) using RAPD, ISSR, and SSR markers and pseudotestcross mapping strategy. Tree Genetics and Genomes 3, 15-24 https://doi.org/10.1007/s11295-006-0048-y
  81. Venkateswarlu, M., B. N. Susheelamma, A. Sarkar, and R. K. Datta (1994) Isozyme studies in mulberry germplasm introduced from Rajasthan. Indian J Sericult. 33, 98-99
  82. Vijayan, K, S. Chauhan and N. K. Das, (1997a) Chakraborti, S. P. and Roy B. N., Leaf yield component combining abilities in mulberry (Morus spp). Euphytica 98, 47-52 https://doi.org/10.1023/A:1003066613099
  83. Vijayan, K., K. K. Das, S. P.Chakraborti and B. N. Roy (1997b) Heterosis for leaf yield and related characters in mulberry. Indian J. Genet and Plant Breed 583, 369-374
  84. Vijayan, K. and S. N. Chatterjee (2003) ISSR profiling of Indian cultivars of mulberry (Morus spp.) and its relevance to breeding programs. Euphytica 131, 53-63 https://doi.org/10.1023/A:1023098908110
  85. Vijayan, K. (2004) Genetic relationships of Japanese and Indian mulberry (Morus spp.) revealed by DNA fingerprinting. Plant Sys. Evol. 243, 221-232 https://doi.org/10.1007/s00606-003-0078-y
  86. Vijayan, K., A. K. Awasthi, P. P. Srivastava, and B. Saratchandra, (2004a) Genetic analysis of Indian mulberry varieties through molecular markers. Hereditas 141, 8-14 https://doi.org/10.1111/j.1601-5223.2004.01813.x
  87. Vijayan, K., P. K. Kar, A. Tikader, P. P. Srivastava, A. K. Awasthi, K. Thangavelu and B. Saratchandra (2004b) Molecular evaluation of genetic variability in wild populations of mulberry (Morus serrata Roxb.). Plant Breeding 123, 568-572 https://doi.org/10.1111/j.1439-0523.2004.01035.x
  88. Vijayan, K., P. P. Srivastava and A. K. Awasthi (2004c) Analysis of phylogenetic relationship among five mulberry (Morus) species using molecular markers. Genome 47, 439- 448 https://doi.org/10.1139/g03-147
  89. Vijayan, K. S. N. Chatterjee, and C. V. Nair (2005) Molecular characterization of mulberry genetic resources indigenous to India, Genet. Resour. Crop Evol. 52, 77-86 https://doi.org/10.1007/s10722-005-0288-y
  90. Vijayan, K., A. Tikader, P. K. Kar, P. P.Srivastava, A. K. Awasthi, K. Thangavelu, and B. Saratchandra (2006a) Assessment of genetic relationships between wild and cultivated mulberry (Morus) species using PCR based markers. Genet. Resour. Crop Evol. 53, 873-882 https://doi.org/10.1007/s10722-004-6148-3
  91. Vijayan K., P. P. Srivastava, C. V.Nair, A. Tikader, A. K. Awasthi, and S. Raje Urs (2006b) Molecular characterization and identification of markers associated with leaf yield traits in mulberry using ISSR markers. Plant Breeding 125, 298- 301 https://doi.org/10.1111/j.1439-0523.2006.01212.x
  92. Vos, P., R. Hogers, M.Bleeker, M. Reijans, T. Van de Lee, Hornes, M., A. Frijters, J. Pot, J. Peleman, M. Kuiper and M. Zabeau (1995) AFLP: a new technique for DNA fingerprinting. Nucleic Acids Res. 23, 4407-4414 https://doi.org/10.1093/nar/23.21.4407
  93. Wang, Z. W. and M. D. Yu (2001) AFLP analysis of genetic background of polyploid breeding materials of mulberry. Acta Sericologic Sinica 27, 170-176
  94. Wang, Z.J., L. Weber, G. Zhong, and S. D.Tanksley (1994) Survey of plant short tandem DNA repeats. Theor. Appl. Genet. 88, 1-6
  95. Weeden, N. F. (1989) Genetics of plant isozymes; in Isozymes in plant biology, D.E. Soltis and P.S. Soltis (eds.), pp. 46-72, Chapman and Hall, London
  96. Welsh, J. and M. McClelland (1990) Fingerprinting genomes using PCR with arbitrary primers. Nucleic Acids Res. 18, 7213-7218 https://doi.org/10.1093/nar/18.24.7213
  97. Williams, J. G. K. , A. R. Kubelik, K. J. Livak, J. A. Rafalski, and S.V. Tingey, (1990) DNA polymorphisms amplified by arbitrary primers are useful as genetic markers. Nucleic Acids Res. 18, 6513-6535
  98. Wu, K., R. Jones, L. Dannaeberger and P. A. Scolnik (1994) Detection of microsatellite polymorphisms without cloning. Nucleic. Acids. Res, 22, 3257-3258 https://doi.org/10.1093/nar/22.15.3257
  99. Xiang, Z, Z. Zhang, M. Yu (1995) A preliminary report on the application of RAPD in systematics of Morus alba. Acta Sericologic Sinica 21, 203-207
  100. Yongkang, H. (2000) Mulberry cultivation in China. FAO Electronic conference on mulberry for animal production (Morus-L) (on disk)
  101. Zeng, Z.-B. (1994) Precision mapping of quantitative trait loci. Genetics 136, 1457-1468
  102. Zhao, W., and Pan, Y. (2004) Genetic diversity of genus Morus revealed by RAPD markers in China. International Journal of Agriculture and Biology, 6, 950-954
  103. Zhao, W., X. Miao, S. Jia, Y.Pan, Y. Huang, (2005) Isolation and characterization of microsatellite loci from the mulberry, Morus L.. Plant Science 16, 519-525
  104. Zhao, W., Y. Wang, T.Chen, , G. Jia , X. Wang, J.Qi, Y. Pang, S. Wang, Z.Li, Y. Huang, Y. Pan and Y. Yang (2007) Genetic structure of mulberry from different ecotypes revealed by ISSRs in China: an mplications for conservation of local mulberry varieties. Scientia Horticulturae (in press)
  105. Zhao, W., Z. Zhou, X. Miao, S. Wang, L. Zhang, Y. Pan and Y. Huang (2006) Genetic relatedness among cultivated and wild mulberry (Moraceae: Morus) as revealed by inter-simple sequence repeat (ISSR) analysis in China. Canadian J. Plant Sci. 86, 251-257 https://doi.org/10.4141/P04-110
  106. Zietkiewicz, E., A. Rafalski and D. Labuda, (1994) Genome fingerprinting by simple sequence repeat (SSR) - anchored polymerase chain reaction amplification. Genomics 20, 176- 183 https://doi.org/10.1006/geno.1994.1151