Survival and Physiological Responses of the Tunicate Halocynthia roretzi to Salinity Changes

염분변화에 따른 멍게 Halocynthia roretzi의 생존과 생리적 반응

  • 신윤경 (국립수산과학원 남해특성화연구센터) ;
  • 최낙중 (국립수산과학원 남해특성화연구센터) ;
  • 허영백 (국립수산과학원 양식환경연구센터) ;
  • 한형균 (국립수산과학원 양식환경연구센터) ;
  • 박정흠 (국립수산과학원 양식환경연구센터) ;
  • 김윤 (바다목장화사업단)
  • Published : 2007.12.31

Abstract

We investigated survival and osmolarity, oxygen consumption, amonia extetion and filtration rates associated with physiological responses of the tunicate Halocynthia roretzi salinity changes. Acclimation times for osmolatity in different salinities took $20{\sim}26$ hours in 60% SW (19.8 psu) and $20{\sim}25$ hours in 80% SW (26.4 psu), while their times took $7{\sim}8$ hours in 110% SW (36.3 psu). Accordingly, acclimation times for high salinities were faster than those for low salinities. Survival (%) was more than 80% at salinity over 26.4 psu, and 6 $days-LS_{50}$ was 25.4 psu. physiological responses such as oxygen consumption, amonia excretion and filtration rates of H. roretzi showed more clear reactions in the longer exposure period (four days after exposure) than that in the beginning of the exposure. To sum up the results, the tunicate might be stressed from the beginning of the exposure in low salinity.

염분변화에 대한 양식 멍게 Halocynthia roretzi의 생리적 변화를 알아보기 위하여 생존율과 염분감소에 따른 삼투조절능, 산소소비율, 암모니아질소배설률 및 여수율 등의 생리적 반응을 조사하였다. 염분변화에 따른 삼투질농도의 순치시간은 60% 희석해수에서 $20{\sim}46$시간 소요되었으며, 80% 희석해수에서는 $20{\sim}25$시간, 고염분인 110% 해수에서는 노출된 지 $7{\sim}8$시간 만에 순치하여 저염분에 비해 빠르게 순치하였다. 생존율은 염분26.4 psu 이상에서 생존율 80% 이상을 나타내었으며, 6일 동안의 $LS_{50}$은 25.4 psu이었다. 멍게의 산소소비율, 암모니아질소배설률 및 여수율 등의 대사반응은 노출초기에 비해 노출 4일째 증가 혹은 감소의 뚜렷한 반응을 보였으며, O:N비는 노출기간 동안 염분 $26.4{\sim}6.6\;psu$에서 15 이하의 낮은 값을 보이고 있는 것으로 보아 노출초기부터 염분에 대한 스트레스를 심하게 받는 것으로 여겨진다.

Keywords

References

  1. Almada-villela, P.C., 1984. The effects of reduced salinity on the growth of small Mytilus edulis. J. Mar. Biol. Ass. U.K., 64, 171-182 https://doi.org/10.1017/S0025315400059713
  2. Bayne, B.L., D.R. Livingstone, M.N. Moore and J. Widdows, 1976. A cytochemical and biochemical index of stress in Mytilus edulis L. Mar. Poll. Bull. 7, 221-224
  3. Bohle, B., 1972. Effects of adaptation to reduced salinity on filtration activity and growth of mussels (Mytilus edulis). J. Exp. Mar. Biol. Ecol., 10, 41-49 https://doi.org/10.1016/0022-0981(72)90091-3
  4. Cole, H.A. and B.T. Hepper, 1954. The use of neutral red solution for the comparative study of filtration rate of Lamelli branchs. J. Cons Int. Explror. Mer., 20, 197-203 https://doi.org/10.1093/icesjms/20.2.197
  5. Corner, E.D.S. and C.B. Cowey, 1968. Biochemical studies on the production of marine zooplankton. Biol. Bull., 43, 393-426
  6. Dybern, B. I., 1969. Distribution and ecology of the tunicate Ascidiella sacbra (Muller) in Scagerak-Kattegaat of the Baltic proper, Distribution and ecology. Limnologica, 7, pp. 27-36
  7. Finney, D.J., 1971. Probit Analysis. 3rd ed. London: Cambridge University press
  8. Goodbody, I., 1962. The biology of Ascidia nigra(Savigny) I. Survival and mortality in an adult population. Biol. Bull. (Woods Hole, Mass.), 122, pp. 299-305
  9. Hand S.C. and W.B. Stickle. 1977. Effects of tidal fluctuations of salinity on pericardial fluid composition of the American Crassostrea virginica. Mar. Biol., 42, 259-271 https://doi.org/10.1007/BF00397750
  10. Henze, M., 1911. Untersuchungen ber das bult der Ascidien I. Mitteiung. Die vanadiumverbindung der Blutkrperchen. Hoppe-Seyler's Z. Physiol. Chem., 72, pp. 494-501 https://doi.org/10.1515/bchm2.1911.72.5-6.494
  11. Kobayashi, G., 1935. Chemical composition of the body fluid of an ascidian: Chelyosoma. Siboha Oka. Sci. Rep. Toboku, Univ. Series IV, 9, pp. 407-413
  12. Linda L. S., 1984. Osmorgulatory capabilities of three macrosympatric stolidobranch ascidians, Stylela clava Herdman, S. plicata (Lesueur), and S, montereyensis(Dall). J. Exp. Mar. Biol. Ecol., 82, 117-129 https://doi.org/10.1016/0022-0981(84)90098-4
  13. Markus, J.A. and C.C. Lambert, 1983. Urea and ammonia excretion by solitary ascidians. J. Exp. Mar. Biol. Ecol., 66, 1-10 https://doi.org/10.1016/0022-0981(83)90023-0
  14. Mayzaud, P. 1973. Respiration and nitrogen excretion of zooplankton. II. Studies of the metabolic characteristics of starved animals. Mar. Biol., 21, 19-28 https://doi.org/10.1007/BF00351188
  15. Miller, M.A. and R.K. Packer, 1977. A structural and functional study of the role of the renal sac in ionic regulation in the tunicate Molgula manhattensis. Comp. Biochem. Physiol., 57A, 424-427
  16. Navarro J.M. and C.M. Gonzalez, 1998. Physiological responses of the Chilean scallop Argopecten purpuratus to decreasing salinities. Aquaculture, 167, 315-327 https://doi.org/10.1016/S0044-8486(98)00310-X
  17. Oglesby, L.C., 1965. Water and chloride regulation in nerids. Comp. Biochem. Physiol., 14, 621-640 https://doi.org/10.1016/0010-406X(65)90250-1
  18. Peter M. T. and B. A. Elizabeth, 1988. Osmoregulation in the intertidal gastropod Littorina littorea. J. Exp. Mar. Biol. Ecol., 122, 35-46 https://doi.org/10.1016/0022-0981(88)90210-9
  19. Pierce, S. K., 1971. A source of solute for volume regulation in marine mussels. Comp. Biochem. Physiol., 39A, 103-117
  20. Robertson, J.D., 1954. The chemical composition of the blood of some aquatic chordates including members of the Tunicata, Cyclostomata, and Osteichthyes. J. Exp. Biol., 31, 424-442
  21. Sastry A.N. and S.L. Vargo, 1977. Variations in the physiological response of crustacean larvae to temperature. (in) F. J. Vernberg, A. Calabrese, F.P. Thurberg and W. B. Vernberg (Eds.), Physiological Response of Marine Biota to Pollutants. Academic Press, New York., pp. 410-424
  22. Shin, Y.K. B.H. Kim, B.S. Oh, C.G. Jung, S.G. Sohn and J.S. Lee, 2006. Physiological responses of the ark shell Scapharca broughtonii (Bivalvia: Arcidae) to decreases in salinity. J. Fish. Sci. Technol. 9(4), 153-159 https://doi.org/10.5657/fas.2006.9.4.153
  23. Solorzano, L., 1969. Determination of ammonia in natural waters by the phenolhypochlorite method. Limnol. Oceanogr., 14, 799-801 https://doi.org/10.4319/lo.1969.14.5.0799
  24. Shumway, S., 1977. The effects of fluxtuating salinity on the tissue water content of eight species of bivalve mollusks. J. Comp. Physiol., 116, 269-285 https://doi.org/10.1007/BF00689036
  25. Widdows, J., 1978. Physiological indices of stress in Mytilus edulis. J. Mar. Biol. Ass. U. K., 58, 125-142 https://doi.org/10.1017/S0025315400024450
  26. Widdows, J., 1985. The effects of fluctuating and abrupt changes in salinity on the performance of Mytilus edulis. (in) J. S. Gray and M. E. Christiansen, (Eds.), Marine Biology of Polar Regions and Effects of stress on marine organism. Wiley- Interscience, pp. 555-566