DOI QR코드

DOI QR Code

면진장치를 설치한 회전기기의 지진취약도 개선효과 분석

Analysis of Seismic Fragility Improvement Effect of an Isolated Rotational Equipment

  • 김민규 (한국원자력연구원 종합안전평가센터) ;
  • 대조정수 (일본전력중앙연구소) ;
  • 전영선 (한국원자력연구원 종합안전평가센터) ;
  • 최인길 (한국원자력연구원 종합안전평가센터)
  • 발행 : 2007.12.31

초록

본 연구에서는 원자력발전소 비상디젤발전기의 내진안전성을 정량적으로 평가하기 위하여 지진취약도 분석방법을 제안하고 제안한 방법을 이용하여 비상디젤발전기의 지진취약도를 평가하여 정량적인 지진위험도를 제시하였다. 기존의 비상디젤발전기뿐만 아니라 면진장치를 설치하여 지진력 저감효과를 증대시킨 비상디젤발전기에 대한 지진취약도 분석을 함께 수행하여 비상디젤발전기와 같은 대형 회전기기의 경우 면진장치를 통한 지진취약도의 변화를 살펴보았다. 최종적으로 지진취약도 결과를 이용하여 HCLPF값의 변화를 비교하여 면진에 의하여 비상디젤발전기의 취약도를 크게 개선 할 수 있는 것을 알 수 있었으며, 면진된 경우 면진장치의 파괴가 전체 거동을 지배하므로 면진장치의 성능개선이 필요한 것을 알 수 있었다.

In this study, for the evaluation of seismic safety of the isolated Emergency Diesel Generator (EDG) System more quantitatively, the seismic fragility analysis method were proposed. Using the proposed method, seismic fragility analysis performed and a seismic risk of EDG system was present. The fragility analysis performed not for an existing EDG system but also for an isolated EDG system which increases the seismic capacity. At first, numerical models for existing and isolated EDG system were constructed and seismic response analysis performed according to input seismic waves and peak ground accelerations. An uncertainty factors and failure modes of both fixed and isolated EDG system were assumed for fragility analysis. The HCLPF values were evaluated for the compare the improvement effect using the isolation system. As a result, the isolation system can make better the seismic fragility of EDG system, but the failure of isolation system was govern the behavior of whole system.

키워드

참고문헌

  1. (社)日本原子力學會標準, 原子力發展所의地震에起因한 確率論的安全性評價實施基準, 2006
  2. Ang, A.H.S. Pires, J.A. and Villaverde, R. A Model for the Seismic Reliability Assessment of Electric Power Transmission System, Reliability Engineering and System Safety, Vol 51, 1996, pp. 7-22 https://doi.org/10.1016/0951-8320(95)00101-8
  3. Bhargava, K., Ghosh, A.K., Agrawal, M.K., Patnaik, R., Ramanujam, S. and Kushwaha, H.S. Evaluation of Seismic Fragility of Structures-a case study, Nuclear Engineering and Design 212, 2002, pp. 253-272 https://doi.org/10.1016/S0029-5493(01)00491-5
  4. Camensig, C. Bresesti, L., Clementel, S. and Salvetti, M. Seismic Risk Evaluation for High Voltage Air Insulated Substations, Reliability Engineering and System Safety, Vol 55, 1997, pp. 179-191 https://doi.org/10.1016/S0951-8320(96)00107-X
  5. Dimova, S.L. and Hirata, K. Simplified Seismic Fragility Analysis of Structures with Two Types of Friction devices, Earthquake Engineering and Structural dynamics, Vol 29, 2000, pp. 1153-1175 https://doi.org/10.1002/1096-9845(200008)29:8<1153::AID-EQE961>3.0.CO;2-Y
  6. Ghiocel, D.M., Wilson, P.R., Thomas, G.G. and Stevenson, J.D. Seismic Response and Fragility Evaluation for an Eastern US NPP Including Soil-Structure Interaction Effects, Reliability Engineering and System Safety, Vol 62, 1998, pp. 197-214 https://doi.org/10.1016/S0951-8320(98)00020-9
  7. Hirata, K. and Somaki, T., Fragility estimation of an Isolated FBR Structure Considering the Ultimate State of Rubber Bearing, Nuclear Engineering and Design 147, 1994, pp. 183-196 https://doi.org/10.1016/0029-5493(94)90205-4
  8. Hirata, K., Kobayashi, Y., Kameda. H. and Shiojiri, H., Fragility of Seismically Isolated FBR Structure, 1991
  9. Kenedy, R.P. and Ravindra, M.K., Seismic Fragilities for Nuclear Power Plant Risk Studies, Nuclear Engineering and Design 79, 1984, pp. 47-68 https://doi.org/10.1016/0029-5493(84)90188-2
  10. Ozaki, M., Okazaki, A., Tomomoto, K., Iba, T., Satoh, R., Nanba, H., Seya, H., Moriyama, K. and Ugata, T. Improved Response Factor Methods for Seismic Fragility of Reactor Building, Nuclear Engineering and Design, 185, 1998, pp. 277-291 https://doi.org/10.1016/S0029-5493(98)00237-4
  11. Park, Y.J. Hofmayer, C.H and Chohshi, N.C. Survey of Seismic Fragility Used in PRA Studies of Nuclear Power Plants, Reliability Engineering and System Safety, Vol 62, 1998, pp. 185-195 https://doi.org/10.1016/S0951-8320(98)00019-2
  12. Singhal, A. and Kiremidjian, A.S. Method for Probabilistic Evaluation of Seismic Structural Damage, Journal of Structural Engineering Vol. 122, No. 12, 1996, pp. 1459-1467 https://doi.org/10.1061/(ASCE)0733-9445(1996)122:12(1459)
  13. US NRC Regulatory Guide 1.60. Design Response Spectra for Seismic Design of Nuclear Power Plants, 1973
  14. Young-Sun Choun, Yasuki Ohtori, In-Kil Choi, Min-Kyu Kim, Yoshiaki Shiba and Masato Nakajima, Korea-Japan Joint Research on Development of Seismic Capacity Evaluation and Enhancement Technology Considering Near-Fault Effect (Annual Report 2005), KAERI/RR-2604 / 2005
  15. 김상훈 (2003a), 'Steel Jacket으로 보강된 콘크리트 교량에 대한 지진취약도 개발', 한국지진공학회 논문집, 제7권, 제5호, pp. 75-83
  16. 김상훈 (2003b), '다경간 콘크리트 교량의 지진 취약도', 한국지진공학회 논문집, 제7권, 제6호, pp. 35-47
  17. 영광 5,6호기 확률론적 안전성 평가[외부사건분석 보고서, 2000. 11. 전력연구원
  18. 堤英明,蛯沢勝三,山田博幸,柴田勝之, 確率論的手法에의한 機器免震性能設計의 有效性評價手法, 日本學術會議, 2003
  19. 최인길,서정문,'확률론적 지진위험도 분석을 위한 원전 격납 건물의 비탄성에너지 흡수계수 평가', 한국지진공학회 논문집, 제5권, 제5호, 2001, pp. 47-56
  20. 최인길,서정문,전영선,이종림,'스펙트럼 형상이 원전 기기 지진취약도에 미치는 영향 평가', 한국지진공학회 논문집, 제7권, 제4호, 2003, pp. 23-30
  21. 최인길, 전영선, 서정문, 'Development of a Uniform Hazard Spectrum for a Soil Site by Considering the Site Soil Condition,' 2004년도 원자력학회 추계 학술발표회, 2004