Proteomic Identification of Proteins Interacting with a Dual Specificity Protein Phosphatase, VHZ

  • Kim, Jae-Hoon (Facuity of Biotechnology, College of Applied Life Science, Cheju National University) ;
  • Jeong, Dae-Gwin (Systemic Proteomic Research Center, Korea Research Institute of Bioscience and Biotechnology)
  • Published : 2007.06.30

Abstract

Identification of Dual-specificity protein phosphatase (DSP) substrates is essential in revealing physiological roles of DSPs. We isolated VHZ-interacting proteins from extracts of 293T cells overexpressing a VHZ (C95S, D65A) mutant known to be substrate- trapping mutant. Analysis of specific proteins bound to VHZ by 2D gel electrophoresis and mass spectroscopy revealed that these proteins contained Chaperonin containing TCP1, Type II phosphatidylinositol phosphate kinase ${\gamma}$, Intraflagellar transport 80 homolog, and Kinesin superfamily protein 1B. VHZ-interacting proteins showed that VHZ is involved in many important cellular signal pathways such as protein folding, molecular transportation, and tumor suppression.

Keywords

References

  1. Alonso A, Saxena M, Williams S, and Mustelin T (2001) Inhibitory role for dual specificity phosphatase VHR in T cell antigen receptor and CD28-induced Erk and Jnk activation. J Biol Chem 276, 4766-4771 https://doi.org/10.1074/jbc.M006497200
  2. Alonso A, Merlo JJ, Na S, Kholod N, Jaroszewski L, Kharitonenkov A, Williams S, Godzik A, Posada JD, and Mustelin T (2002) Inhibition of T cell antigen receptor signaling by VHR-related MKPX (VHX), a new dual specificity phosphatase related to VH1 related (VHR). J Biol Chem. 277, 5524-5528 https://doi.org/10.1074/jbc.M107653200
  3. Alonso A, Burkhalter S, Sasin J, Tautz L, Bogetz J, Huynh H, Bremer MC, Holsinger LJ, Godzik A, and Mustelin T (2004a) The minimal essential core of a cysteinebased protein-tyrosine phosphatase revealed by a novel 16-kDa VH1-like phosphatase, VHZ. J Biol Chem 279, 35768-35774 https://doi.org/10.1074/jbc.M403412200
  4. Alonso A, Narisawa S, Bogetz J, Tautz L, Hadzic R, Huynh H, Williams S, Gjorloff-Wingren A, Bremer MC, Holsinger LJ, Millan JL, and Mustelin T (2004b) VHY, a novel myristoylated testis-restricted dual specificity protein phosphatase related to VHX. J Biol Chem 279, 32586-32591 https://doi.org/10.1074/jbc.M403442200
  5. Alonso A, Sasin J, Bottini N, Friedberg I, Osterman A, Godzik A, Hunter T, Dixon J, and Mustelin T. (2004c) Protein tyrosine phosphatases in the human genome. Cell 117, 699-711 https://doi.org/10.1016/j.cell.2004.05.018
  6. Andersen JS, Lam YW, Leung AK, Ong SE, Lyon CE, Lamond AI, and Mann M (2005) Nucleolar proteome dynamics. Nature 433, 77-83 https://doi.org/10.1038/nature03207
  7. Aoyama K, Nagata M, Oshima K, Matsuda T, and Aoki N (2001) Molecular cloning and characterization of a novel dual specificity phosphatase, LMW-DSP2, that lacks the cdc25 homology domain. J Biol Chem 276, 27575- 27583 https://doi.org/10.1074/jbc.M100408200
  8. Chen AJ, Zhou G, Juan T, Colicos SM, Cannon JP, Cabriera-Hansen M, Meyer C F, Jurecic R, Copeland NG, Gilbert DJ, Jenkins NA, Fletcher F, Tan TH, and Belmont JW (2002) The dual specificity JKAP specifically activates the c-Jun N-terminal kinase pathway. J Biol Chem 277, 36592-36601 https://doi.org/10.1074/jbc.M200453200
  9. Denu JM and Dixon JE (1998) Protein tyrosine phosphatases: mechanisms of catalysis and regulation. Curr Opin Chem Biol 2, 633-641 https://doi.org/10.1016/S1367-5931(98)80095-1
  10. Flint AJ, Tiganis T, Barford D, and Tonks NK (1997) Development of “substrate-trapping” mutants to identify physiological substrates of protein tyrosine phosphatases. Proc Natl Acad Sci USA 94, 1680-1685
  11. Guo D, Han J, Adam BL, Colburn NH, Wang MH, Dong Z, Eizirik DL, She JX, and Wang CY (2005) Proteomic analysis of SUMO4 substrates in HEK293 cells under serum starvation-induced stress. Biochem Biophys Res Commun 337, 1308-1318 https://doi.org/10.1016/j.bbrc.2005.09.191
  12. Itoh T, Ijuin T, and Takenawa T (1998) A novel phosphatidylinositol- 5-phosphate 4-kinase (phosphatidylinositol-phosphate kinase IIgamma) is phosphorylated in the endoplasmic reticulum in response to mitogenic signals. J Biol Chem 273, 20292-20299 https://doi.org/10.1074/jbc.273.32.20292
  13. Kim SJ, Jeong DG, Yoon TS, Son JH, Cho SK, Ryu SE, and Kim JH (2007) Crystal structure of human TMDP, a testis-specific dual specificity protein phosphatase: implications for substrate specificity. Proteins 66, 239-245 https://doi.org/10.1002/prot.21197
  14. Kubota H, Hynes G, Carne A, Ashworth A, and Willison K (1994) Identification of six Tcp-1-related genes encoding divergent subunits of the TCP-1-containing chaperonin. Curr Biol 4, 89-99 https://doi.org/10.1016/S0960-9822(94)00024-2
  15. Miki H, Setou M, Kaneshiro K, and Hirokawa N (2001) All kinesin superfamily protein, KIF, genes in mouse and human. Proc Natl Acad Sci USA 98, 7004-7011
  16. Rahmouni S, Cerignoli F, Alonso A, Tsutji T, Henkens R, Zhu C, Louis-dit-Sully C, Moutschen M, Jiang W, and Mustelin T (2006) Loss of the VHR dual-specific phosphatase causes cell-cycle arrest and senescence. Nat Cell Biol 8, 524-531 https://doi.org/10.1038/ncb1398
  17. Sakaue H, Ogawa W, Nakamura T, Mori T, Nakamura K, and Kasuga M (2004) Role of MAPK phosphatase-1(MKP-1) in adipocyte differentiation. J Biol Chem 279, 39951-39957 https://doi.org/10.1074/jbc.M407353200
  18. Shiozaki K and Russell P (1995) Cell-cycle control linked to extracellular environment by MAP kinase pathway in fission yeast. Nature 378, 739-743 https://doi.org/10.1038/378739a0
  19. Smith TF, Gaitatzes C, Saxena K, and Neer EJ (1999) The WD repeat: a common architecture for diverse functions. Trends Biochem Sci 24, 181-185 https://doi.org/10.1016/S0968-0004(99)01384-5
  20. Sun H, Charles CH, Lau LF and Tonks NK (1993) MKP-1(3CH134), an immediate early gene product, is a dual specificity phosphatase that dephosphorylates MAP kinase in vivo. Cell 75, 487-493 https://doi.org/10.1016/0092-8674(93)90383-2
  21. Takagaki K, Satoh T, Tanuma N, Masuda K, Takekawa M, Shima H, and Kikuchi K (2004) Characterization of a novel low-molecular-mass dual-specificity phosphatase-3(LDP-3) that enhances activation of JNK and p38. Biochem J 383, 447-455 https://doi.org/10.1042/BJ20040498
  22. Wu JJ and Bennett AM (2005) Essential role for mitogenactivated protein (MAP) kinase phosphatase-1 in stressresponsive MAP kinase and cell survival signaling. J Biol Chem. 280, 16461-16466 https://doi.org/10.1074/jbc.M501762200
  23. Wu J, Katrekar A, Honigberg LA, Smith AM, Conn MT, Tang J, Jeffery D, Mortara K, Sampang J, Williams SR, Buggy J, and Clark JM (2006) Identification of substrates of human protein-tyrosine phosphatase PTPN22. J Biol Chem 281, 11002-11010 https://doi.org/10.1074/jbc.M600498200
  24. Yang HW, Chen YZ, Takita J, Soeda E, Piao HY, and Hayashi Y (2001) Genomic structure and mutational analysis of the human KIF1B gene which is homozygously deleted in neuroblastoma at chromosome 1p36.2. Oncogene 20, 5075-5083 https://doi.org/10.1038/sj.onc.1204456
  25. Yu W, Imoto I, Inoue J, Onda M, Emi M, and Inazawa JA (2007) novel amplification target, DUSP26, promotes anaplastic thyroid cancer cell growth by inhibiting p38 MAPK activity. Oncogene 26, 1178-1187 https://doi.org/10.1038/sj.onc.1209899
  26. Yuvaniyama J, Denu JM, Dixon JE, and Saper MA (1996) Crystal structure of the dual specificity protein phosphatase VHR. Science 272, 1328-1331 https://doi.org/10.1126/science.272.5266.1328