합성암반체 접근법에 대한 고찰

Review of the Synthetic Rock Mass Approach

  • 박철환 (한국지질자원연구원 지반안전연구부) ;
  • 신중호 (한국지질자원연구원 지반안전연구부) ;
  • 박의섭 (한국지질자원연구원 지반안전연구부)
  • 발행 : 2007.12.31

초록

본 기술보고서는 Lisbon에서 개최된 2007 ISRM Congress에서 발표된 논문을 소개한 것이다. 이는 SRM(합성암반체)에 관한 연구결과이며, 이의 중요성과 향후 잠재력을 강조하고 있는 Fairhurst 교수가 직접 발표한 논문이다. 절리 암반의 특성을 규명하는 SRM 접근법은 현존하는 경험적 접근법이나 절리 암반의 거동에 대한 현재의 이해정도와 관련지어 재검토된다. 이 재검토 논문에서 절리 암반의 역학적 거동에 영향을 미치는 주요 요소들이 어떻게 고려되는가를 기술하며, 또 SRM 접근법이 상당히 발전되어 현장에 적용된 사례를 보여준다. PFC-3D에서 BP 모델링과 DFN 모사법 등의 두개의 잘 정립된 방법에 기초를 두고 있는 이 기법은 새로운 미끄러지는 절리모델을 사용한다. 이 모델은 모든 응력경로에 의하여 힘을 받고 있는 수천개의 기존 절리를 포함하는 대규모 암반체를 모사할 수 있게 하는 것이다. 암반의 강도 및 취성도, 완전 순응 행렬의 전개, 그리고 초기의 파쇄 등이 SRM 시험에서 얻어지는 결과이다.

This technical report is to introduce the research on SRM (Synthetic Rock Mass) which was presented in 2007 ISRM Congress at Lisbon by Prof, Fairhurst who speak with emphasis on its importance and potential in rock engineering. The Synthetic Rock Mass approach to jointed rock mass characterization (Pierce et al. 2007) is reviewed relative to existing empirical approaches and current understanding of jointed rock mass behaviour. The review illustrates how the key factors affecting the mechanical behaviour of jointed rock masses may be considered and demonstrates that the SRM approach constitutes a significant step forward in this field. This technique, based on two well-established methods, Bonded Particle Modelling in PFC-3D (Potyondy and Cundall, 2004) and Discrete Fracture Network simulation, employs a new sliding joint model that allows for large rock volumes containing thousands of pre-existing joints to be subjected to any non-trivial stress path. Output from SRM testing includes rock mass brittleness and strength, evolution of the full compliance matrix and primary fragmentation.

키워드

참고문헌

  1. Barton N., 1976, 'The Shear Strength of Rock and Rock joints.' Int. J. Rock Mech. Min. Sci.;13:255-279 https://doi.org/10.1016/0148-9062(76)90003-6
  2. Barton N. and Stephansson O., 1990, 'Proceedings of the International Symposium on Rock Joints', 4-6 June, Loen, Norway, AA Balkema, Rotterdam
  3. Barton N., 1993, 'Physical and Discrete Element Models of Excavation and Failure in Jointed Rock.' In : Assessment and Prevention of Failure Phenomena in Rock Engineering, Pasamehmetoglu et al, (eds.), Balkema, Rotterdam
  4. Bobet A., 1997, 'Facture coalescence in rock materials : experimental observations and numerical predictions', Sc.D. Thesis. Massachusetts Institute of Technology, Cambridge, Massachusetts
  5. Bobet A. and Einstein H.H., 1998a, 'Facture Coalescence in Rock-type Materials under Uniaxial and Biaxial Compression', Int. J. Rock Mech. Min. Sci.;35: 863 -888 https://doi.org/10.1016/S0148-9062(98)00005-9
  6. Bobet A. and Einstein H.H., 1998b, 'Numerical modelling of fracture coalescence in a model rock material', Int. J. Fract.;92:221-252 https://doi.org/10.1023/A:1007460316400
  7. Brown E.T., 2003, 'Block Caving Geomechanics (The International Caving Study I, 1997-2000)', University of Queensland, JKMRC Monograph Series in Mining and Mineral Processing, Vol. 3. Indooroopilly, Australia
  8. Byerlee J.D., 1990, 'Friction, overpressure and fault normal compression', Geophys. Res. Lett.;17:2109-21 12 https://doi.org/10.1029/GL017i012p02109
  9. Byerlee J.D., 1992, 'The change in orientation of subsidiary shears near faults containing pore fluid under high pressure', Techtonophysics;211 :295-303 https://doi.org/10.1016/0040-1951(92)90066-F
  10. Colmenares L.B, and Zoback M.D., 2002, 'A Statistical evaluation of intact rock failure criteria constrained by polyaxial test data for five different rocks, Int. J. Rock Mech. Min. Sci.;39(6):695-729 https://doi.org/10.1016/S1365-1609(02)00048-5
  11. Diederichs M.S., 1999, 'Instability of Hard Rockmasses : The Role of Tensile Damage and Relaxation.' Ph.D. Thesis, University of Waterloo
  12. Dyskin A.V., Germanovich L.N., Jewell R.I., Joer H., Krasinski J.S., Lee K.K., Roegiers J-C, Sahouryeh E. and Ustinov K.B., 1994a, 'Study of 3-d mechanisms of crack growth and interaction in uniaxial compression', ISRM News Journal, 2(1), 17-24
  13. Dyskin A.V., Jewell R.J., Joer H., Sahouryeh E. and Ustinov K.B., 1994b, 'Experiments on 3-d crack growth in uniaxial compression', Int. J. Fract., 65, R77-R83 https://doi.org/10.1007/BF00012382
  14. Einstein H.H. and Dershowitz W.S., 1990, 'Tensile and Shear Fracturing in Predominantly Compressive Stress Fields - A Review.' Engng. Geol.,29, 149-172 https://doi.org/10.1016/0013-7952(90)90004-K
  15. Einstein H.H. and Meyer T., 1999, 'Puzzles in Rock.' Muller Lecture, Proc. Int'l. Congress of the ISRM, Vol. 3, Paris
  16. Fairhurst C., Damjanac B. and Brandshaeg T., 2007, 'Rock Mass Strength and Numerical Experiments.' 35th Geomechanics Colloquium, Tech. Univ. Freiberg, lnstitutsheft Geotechnik 2006-5
  17. Fardin N., 2003, 'The effect of scale on the morphology, mechanics and transmissivity of single rock fractures', Ph.D. Thesis, KTH, Stockholm, Sweden
  18. Germanovich L.N., Salganik R.L., Dyskin AV. and Lee KK 1994, 'Mechanisms of brittle fracture of rock with multiple preexisting cracks in compression', Pure and Applied Geophysics (PAGEOPH); 143(13):117-49 https://doi.org/10.1007/BF00874326
  19. Germanovich, L.N. and Dyskin AV 2000, 'Fracture Mechanisms and Instability of Openings in Compression.', Int. J. Rock Mech. Min. Sci.;37:263-284 https://doi.org/10.1016/S1365-1609(99)00105-7
  20. Gray J.P., Monaghan J.J. and Swift R.P., 2001, 'SPH Elastic Dynamics', Comput. Meth. Appl. Mech. Engng. 190:6641-6662 https://doi.org/10.1016/S0045-7825(01)00254-7
  21. Hajiabdolmajid V. and Kaiser P.K., 2003, 'Brittleness of Rock and Stability Assessment in Hard Rock Tunneling.', Tunn. & Underground Space Tech.;18:35-48 https://doi.org/10.1016/S0886-7798(02)00100-1
  22. Hudson J.A., Brown E.T. and Fairhurst C., 1972, 'Shape of the Complete Stress-Strain Curve for Rock.' In : Cording EJ (ed.) Stability of Rock Slopes (proceedings of the 13th U.S. Symposium on Rock Mechanics, University of Illinois at Urbana, 1971), pp. 773-795. New York:ASCE
  23. Itasca Consultants SAS, 2006, '3FLO, Version 2.2' Lyon, France: ICSAS
  24. Itasca Consulting Group Inc, 2003, 'PFC3D (Particle Flow Code in 3 Dimensions)' Version 3.0, Minneapolis: ICG
  25. Jing L., 2003, 'A Review of Techniques, Advances and Outstanding Issues in Numerical Modelling for Rock Mechanics and Rock Engineering', Int. J. Rock Mech. Min. Sci.;40:283-353 https://doi.org/10.1016/S1365-1609(03)00013-3
  26. Kemeny J.M. and Cook N.G.W., 1991, 'Micromechanics of deformation in rocks', In: Shah S. P. (ed) Toughening mechanisms in quasi-brittle materials, Kluwer Academic Publishers, Dordrecht, pp. 155-188
  27. Kemeny J.M., 2003, 'Time-Dependent reduction of sliding cohesion due to rock bridges along discontinuities: a fracture mechanics approach', Rock Mech. Rock Engng;36:27-38 https://doi.org/10.1007/s00603-002-0032-2
  28. Lockner D.A and Madden T.R., 1991a, 'A multiple crack model of brittle fracture - I. non-time-dependent simulations.' J. Geophys. Res.;96:19623-19642 https://doi.org/10.1029/91JB01642
  29. Lockner D.A. and Madden T.R., 1991b, 'A multiple crack model of brittle fracture - 2. time-dependent simulations', J. Geophys. Res.;96: 19643-19654 https://doi.org/10.1029/91JB01641
  30. Lockner, 1995, 'Rock Failure', In: Rock Physics and Phase Relations, 'A Handbook of Physical Constants', AGU
  31. Mas Ivars D., 2007, 'Bonded-Particle Model for the Deformation, Yield and Failure of Jointed Rock Masses', Ph. D. Thesis, KTH, Stockholm, Sweden, In prep
  32. Monaghan J.J., 2000, 'SPH without a Tensile Instability', J. Computat. Phys.;159:290-311 https://doi.org/10.1006/jcph.2000.6439
  33. Napier J.A.L. and Malan D.F., 1997, 'A Viscoplastic Discontinuum Model of Time-Dependent Fracture and Seismicity Effects in Brittle Rock', Int. J. Rock Mech. Min. Sci.;34:1075-1089. https://doi.org/10.1016/S0148-9062(97)00297-0
  34. Napier J.A.L. and Hildyard M.W., 1992, 'Simulation of Fracture Growth around Openings in Highly Stressed, Brittle Rock', J. S. Afr. Inst. Min. Metall. 92:159-168
  35. Park E-S, Martin C.D. and Christiansson R., 2004, 'Simulation of the Mechanical Behavior of Discontinuous Rock Masses Using a Bonded-Particle Model.' In: Yale et al, (eds) Gulf Rocks 2004: Rock Mechanics Across Borders and Disciplines (Proceedings of the 6th North American Rock Mechanics Symposium, Houston) Paper No. 04-480.
  36. Paterson M.S. and Wong T-f., 2005, 'Experimental rock deformation-the brittle field.' 2nd Ed. Springer-Verlag Berlin Heidelberg, p.347
  37. Pierce M., Mas Ivars D., Darcel C., Cundall P.A., Young R.P., Reyes-Montes J. and Pettitt W., 2006, 'Six Monthly Technical Report, Caving Mechanics, SubProject No. 4.2: Research and Methodology Improvement & Sub-Project 4.3, Case Study Application.' ICG, Report to Mass Mining Technology Project, 2004-2007, September
  38. Pierce M., Mas Ivars D., Cundall P.A. and Potyondy D.O., 2007, 'A synthetic rock mass model for jointed rock', NARMS, Vancouver, In press
  39. Pinto de Cunha A. (Ed.), 1990, 'Scale effects in rock masses', A. A. Balkema, Rotterdam, p. 339
  40. Potyondy D.O. and Cundall P.A., 2004, 'A BondedParticle model for Rock', Int. J. Rock Mech. Min. Sci.;41:1329-1364 https://doi.org/10.1016/j.ijrmms.2004.09.011
  41. Potyondy D.O., 2006, 'Simulating stress corrosion with a bonded-particle model for rock', Int. J. Rock Mech. Min. Sci.; doi:10.1016/j.ijrmms.2006.10.002
  42. Reyes-Montes J., Pettitt W. and Young R.P., 2007, 'Validation of a Synthetic Rock Mass Model Using Excavation Induced Micro-seismicity', NARMS, Vancouver, In press
  43. Ribacci R., 2000, 'Mechanical tests on pervasively jointed rock material: Insight into rock mass behaviour.' Rock Mech. Rock Engng.;22(4):243-266
  44. Rummel F. and Fairhurst C., 1970, 'Determination of the Post Failure Behavior of Brittle Rock Using a Servo-Controlled Testing Machine.' Rock Mech.;2(4) :189-204. https://doi.org/10.1007/BF01245574
  45. Sagong M. and Bobet A., 2002, 'Coalescence of multiple flaws in a rock-model material in uniaxial compression', Int. J. Rock Mech. Min. Sci.;39:229 -241 https://doi.org/10.1016/S1365-1609(02)00027-8
  46. Scavia C., 1992, 'A Numerical Technique for the Analysis of Cracks Subjected to Normal Compressive Stresses', Int. J. Numer. Methods Engng.;33:929-942 https://doi.org/10.1002/nme.1620330504
  47. Scavia C., 1995, 'A Method for the Study of Crack Propagation in Rock Structures', Geotechnique;45:447 -463 https://doi.org/10.1680/geot.1995.45.3.447
  48. Secor D.T., 1965, 'Role of fluid pressure in jointing', Am. J. Sci.;263:633-646
  49. Secor D.T., 1968, 'Mechanics of natural extension fracturing at depth in the Earth's crust', Can. Geol. Surv. Pap.;68-52:3-48
  50. Sellers E. and Napier J.A.L., 1997, 'A Comparative Investigation of Micro-Flaw Models for the Simulation of Brittle Fracture in Rock', Computat. Mech.;20: 164-169 https://doi.org/10.1007/s004660050234
  51. Shen B., Stephansson O., Rinne M., Lee H.S., Jing L. and Roshoff K., 2004, 'A Fracture Propagation Code and Its Applications to Nuclear Waste Disposal', Int. J. Rock Mech. Min. Sci.;4l, Special Issue, Proceedings of the ISRM SINOROCK 2004 Symposium. CD, Paper 2B 02
  52. Stephansson O. (Ed.), 1985, 'Proceedings of the International Symposium on Fundamentals of Rock Joints' 15-20 September, Bjorkliden, Sweden, Centek Publishers
  53. Trollope DH 1968, 'The Mechanics of Discontinua or Clastic Mechanics in Rock Problems.' In: Stagg KG and Zienkewicz OC (eds.), Rock Mechanics in Engineering Practice, Wiley (London), pp 275-320
  54. Wong T-f, 1982, 'Effects of temperature and pressure on failure and post-failure behavior of Westerley granite', Mechanics of Materials; 1:3-17 https://doi.org/10.1016/0167-6636(82)90020-5
  55. Wong R.H.C., Chau K.T., Lin P. and Tang CA, 2001, 'Analysis of crack coalescence in rock-like materials containing three flaws-Part I: experimental approach', Int. J. Rock Mech. Min. Sci.;38:909-24 https://doi.org/10.1016/S1365-1609(01)00064-8