DOI QR코드

DOI QR Code

Relative Evaluation for Biocompatibility of Pure Titanium and Titanium Alloys using Histological and Enzymatic Methods

조직학과 효소활성 방법을 이용한 순 타이타늄과 타이타늄 합금의 상대적인 생체적합성 평가

  • Yeom, Dong-Sun (Department of Material Science and Metallurgical Engineering, Sunchon National University) ;
  • Kim, Byung-Il (Department of Material Science and Metallurgical Engineering, Sunchon National University) ;
  • Lee, Yu-Mi (Department of Biology, Sunchon National University) ;
  • Lee, Eun-Jung (Department of Biology, Sunchon National University) ;
  • Yee, Sung-Tae (Department of Biology, Sunchon National University) ;
  • Seong, Chi-Nam (Department of Biology, Sunchon National University) ;
  • Seo, Kwon-Il (Department of Food Nutrition, Sunchon National University) ;
  • Cho, Hyun-Wook (Department of Biology, Sunchon National University)
  • 염동성 (순천대학교 공과대학 금속공학전공) ;
  • 김병일 (순천대학교 공과대학 금속공학전공) ;
  • 이유미 (순천대학교 자연대학 생명과학전공) ;
  • 이은정 (순천대학교 자연대학 생명과학전공) ;
  • 이성태 (순천대학교 자연대학 생명과학전공) ;
  • 성치남 (순천대학교 자연대학 생명과학전공) ;
  • 서권일 (순천대학교 자연대학 식품영양학과) ;
  • 조현욱 (순천대학교 자연대학 생명과학전공)
  • Published : 2007.12.31

Abstract

Titanium or titanium alloy is a widely used implant material according to its certified biocompatibility, sufficient strength and ready availability. The purpose of this study was to evaluate the relative biocompatibility of titanium and titanium alloy specimens (Ti-29Nb-13Ta, TiNb and Ti-6Al-4V, Ti64) using in vivo and in vitro methods. For in vivo experiment, the specimens were implanted in the abdominal subcutaneous region of female mice for 2 and 4 weeks. The reaction of connective tissue to specimens was evaluated histologically. The specimens were encapsulated by fibrous connective tissue consisting of fibroblast, fibrocyte and other cells including neutrophil, macrophage, giant multinucleated cell and unidentified cells. Some newly formed blood vessels were located in the fibrous capsule surrounding the implant. Cell types and the thickness of fibrous capsules were examined quantitatively. Most of cell types located in the fibrous capsule were fibroblasts and fibrocytes. The average thickness of fibrous capsules for the TiNb specimens was much thinner than that of the titanium alloy, Ti64. The thickness of the fibrous capsule around all titanium specimens decreased at 4 weeks compared to 2 weeks post-implantation. The biocompatibility of titanium and titanium alloy specimens were also investigated in in vitro method using alkaline phosphatase from MG-63 cells. Alkaline phosphatase activity of the TiNb specimen showed higher activity than the titanium alloy, Ti64. In conclusion, the TiNb alloy with thin capsule thickness in vivo and high alkaline phosphatase activity in vitro will be of considerable use in biomedical applications.

Keywords

References

  1. Batniji, R.K., Hutchison, J.L., Dahiya, R., Lam, S.L. and Williams, E.F. 3rd. (2002). Tissue response to expanded polytetrafluoroethylene and silicone implants in a rabbit model. Arch. Facial Plast. Surg., 4, 111-113 https://doi.org/10.1001/archfaci.4.2.111
  2. Butler, K.R., Benghuzzi, H.A. and Puckett, A. (2001). Morphometric evaluation tissue-implant reaction associated with ALCAP and TCP bioceramics in vivo. J. Invest. Surg., 14, 139-152 https://doi.org/10.1080/089419301300343291
  3. DeVoto, E. and Yokel, R.A. (1994). The biological speciation and toxicokinetics of aluminum. Environ. Health Perspect., 102, 940-951 https://doi.org/10.2307/3431916
  4. Ito, A., Okazaki, Y., Tateishi, T. and Ito, Y. (1995). In vitro biocompatibility, mechanical properties, and corrosion resistance of Ti-Zr-Nb-Ta-Pd and Ti-Sn-Nb-Ta-Pd alloys. J. Biomed. Mater. Res., 29, 893-899 https://doi.org/10.1002/jbm.820290715
  5. Jacob, J.T., Burgoyne, C.F., McKinnon, S.J., Tanji, T.M., LaFleur, P.K. and Duzman, E. (1998). Biocompatibility response to modified Baerveldt glaucoma drains. J. Biomed. Mater. Res., 43, 99-107 https://doi.org/10.1002/(SICI)1097-4636(199822)43:2<99::AID-JBM3>3.0.CO;2-G
  6. Johnson, R., Harrison, D., Tucci, M., Tsao, A., Lemos, M., Puckett, A., Hughes, J.L. and Benghuzzi, H. (1997). Fibrous capsule formation in response to ultra high molecular weight polyethylene treated with peptides that influence adhesion. Biomed. Sci. Instrum., 34, 47-52
  7. Kao, W.J., Zhao, Q.H., Hiltner, A. and Anderson, J.M. (1994). Theoretical analysis of in vivo macrophage adhesion and foreign body giant cell formation on polydimethylsiloxane low density polyethylene and polyetherurethanes. J. Biomed. Mater. Res., 28, 73-79 https://doi.org/10.1002/jbm.820280110
  8. Kim, M.-J., Kim, C.-W., Lim, Y.-J. and Heo, S.-J. (2006). Microrough titanium surface affects biologic response in MG63 osteoblast-like cells. J. Biomed. Mater. Res., 79A, 1023-1032 https://doi.org/10.1002/jbm.a.31040
  9. Lee, B.-H., Kim, Y.D. and Lee, K.H. (2003). XPS study of bioactive graded layer in Ti-In-Nb-Ta alloy prepared by alkali and heat treatments. Biomaterials, 24, 2257-2266 https://doi.org/10.1016/S0142-9612(03)00034-6
  10. Lee, Y.M., Lee, E.J., Yeom, D.S., Kim, D.S., Yee, S.T., Kim, B.I. and Cho, H.W. (2006). Relative biocompatibility evaluation of anodized titanium specimens in vivo and in vitro. J. Life Sci., 16, 302-309 https://doi.org/10.5352/JLS.2006.16.2.302
  11. Lehle, K., Lohn, S., Reinerth, G., Schubert, T., Preuner, J.G. and Birnbaum, D.E. (2004). Cytological evaluation of the tissue-implant reaction associated with subcutaneous implantation of polymers coated with titaniumcarboxonitride in vivo. Biomaterials, 25, 5457-5466 https://doi.org/10.1016/j.biomaterials.2003.12.055
  12. Li, D.J., Ohsaki, K., Cui, P.C., Ye, Q., Baba, K., Wang, Q.C., Tenshin, S. and Takano-Yamamoto, T. (1999). Thickness of fibrous capsule after implantation of hydroxyapatite in subcutaneous tissue in rats. J. Biomed. Mater. Res., 45, 322-326 https://doi.org/10.1002/(SICI)1097-4636(19990615)45:4<322::AID-JBM6>3.0.CO;2-2
  13. Matsuno, H., Yokoyama, A., Watari, F., Uo, M. and Kawasaki, T. (2001). Biocompatibility and osteogenesis of refractory metal implants, titanium, hafnium, niobium, tantalum and rhenium. Biomaterials, 22, 1253-1262 https://doi.org/10.1016/S0142-9612(00)00275-1
  14. McInnes, A. and Rennick, D.M. (1988). Interleukin 4 induces cultured monocytes/macrophages to form giant multinucleated cells. J. Exp. Med., 167, 598-611 https://doi.org/10.1084/jem.167.2.598
  15. McKay, G.C., Macnair, R., MacDonald, C. and Grant, M.H. (1996). Interactions of orthopaedic metals with an immortalized rat osteoblast cell line. Biomaterials, 17, 1339- 1344 https://doi.org/10.1016/0142-9612(96)88681-9
  16. Mohammadi, S., Esposito, M., Cucu, M., Ericson, L.E. and Thomsen, P. (2001). Tissue response to hafnium. J. Mater. Sci.: Mater. Med., 12, 603-611 https://doi.org/10.1023/A:1011237610299
  17. Murch, A.R., Grounds, M.D., Marshall, C.A. and Papadimitriou, J.M. (1982). Direct evidence that inflammatory multinucleate giant cells form by fusion. J. Pathol., 137, 177- 180 https://doi.org/10.1002/path.1711370302
  18. Naganawa, T., Ishihara, Y., Iwata, T., Koide, M., Ohguchi, M., Ohguchi, Y., Murase, Y., Kamei, H., Sato, N., Mizuno, M. and Noguchi, T. (2004). In vitro biocompatibility of a new titanium-29niobium-13tantalum-4.6zirconium alloy with osteoblast-like MG63 cells. J. Periodontol., 75, 1701-1707 https://doi.org/10.1902/jop.2004.75.12.1701
  19. Niinomi, M. (2003). Fatigue performance and cyto-toxicity of low rigidity titanium alloy, Ti-29Nb-13Ta-4.6Zr. Biomaterials, 24, 2673-2683 https://doi.org/10.1016/S0142-9612(03)00069-3
  20. Okazaki, Y. and Gotoh, E. (2005). Comparison of metal release from various metallic biomaterials in vitro. Biomaterials, 26, 11-21 https://doi.org/10.1016/j.biomaterials.2004.02.005
  21. Okazaki, Y., Gotoh, E., Manabe, T. and Kobayashi, K. (2004). Comparison of metal concentrations in rat tibia tissues with various metallic implants. Biomaterials, 25, 5913- 5920 https://doi.org/10.1016/j.biomaterials.2004.01.064
  22. Postiglione, L., Di Domenico, G., Ramaglia, L., Montagnani, S., Salzano, S., Di Meglio, F., Sbordone, L., Vitale, M. and Rossi, G. (2003). Behavior of SaOS-2 cells cultured on different titanium surfaces. J. Dent. Res., 82, 692-696 https://doi.org/10.1177/154405910308200907
  23. Rodriguez, R., Kim, K. and Ong, J.L. (2003). In vitro osteoblast response to anodized titanium and anodized titanium followed by hydrothermal treatment. J. Biomed. Mater. Res., 65A, 352-358 https://doi.org/10.1002/jbm.a.10490
  24. Rogers, S.D., Howie, D.W., Graves, S.E., Pearcy, M.J. and Haynes, D.R. (1997). In vitro human monocyte response to wear particles of titanium alloy containing vanadium or niobium. J. Bone Joint Surg. Br., 79, 311-315 https://doi.org/10.1302/0301-620X.79B2.7192
  25. Ryhnen, J., Kallioinen, M., Tuukkanen, J., Junila, J., Niemel, E., Sandvik, P. and Serlo, W. (1998). In vivo biocompatibility evaluation of nickel-titanium shape memory metal alloy: muscle and perineural tissue responses and encapsule membrane thickness. J. Biomed. Mater. Res., 41, 481-488 https://doi.org/10.1002/(SICI)1097-4636(19980905)41:3<481::AID-JBM19>3.0.CO;2-L
  26. Salthouse, T.N. (1984). Some aspects of macrophage behavior at the implant interface. J. Biomed. Mater. Res., 18, 395-401 https://doi.org/10.1002/jbm.820180407
  27. Schreiber, H., Keller, F., Kinzl, H.P., Hunger, H., Knofler, W., Rubling, U. and Merten, W. (1990). The question of the transmissibility of the results of subcutaneous tests of biomaterials from animals to humans. Z. Exp. Chir. Transplant Kunstliche Organe, 23, 23-25
  28. Shimojo, N., Kondo, C., Yamashita, K., Hoshino, T. and Hayakawa, T. (2007). Cytotoxicity analysis of a novel titanium alloy in vitro: adhesion, spreading, and proliferation of human gingival fibroblasts. Biomed. Mater. Eng., 17, 127- 135
  29. Thompson, G.J. and Puleo, D.A. (1996). Ti-6Al-4V ion solution inhibition of osteogenic cell phenotype as a function of differentiation time course in vitro. Biomaterials, 17, 1949-1954 https://doi.org/10.1016/0142-9612(96)00009-9
  30. Udipi, K., Ornberg, R.L., Thurmond II, K.B., Settle, S.L., Forster, D. and Riley, D. (2000). Modification of inflammotry response to implanted biomedical materials in vivo by surface bound superoxide dismutase mimics. J. Biomed. Mater. Res., 51, 549-560 https://doi.org/10.1002/1097-4636(20000915)51:4<549::AID-JBM2>3.0.CO;2-Z
  31. Walboomers, X.F., Croes, H.J.E., Ginsel, L.A. and Jansen, J.A. (1998). Microgrooved subcutaneous implants in the goat. J. Biomed. Mater. Res., 42, 634-641 https://doi.org/10.1002/(SICI)1097-4636(19981215)42:4<634::AID-JBM21>3.0.CO;2-O
  32. Ye, Q., Ohsaki, K., Li, K., Li, D.-J., Zhu, C.-S., Ogawa, T., Tenshin, S. and Takano-Yamamoto, T. (2001). Histological reaction to hydroxyapatite in the middle ear of rats. Auris Nasus Larynx, 28, 131-136 https://doi.org/10.1016/S0385-8146(00)00079-1