References
- Batniji, R.K., Hutchison, J.L., Dahiya, R., Lam, S.L. and Williams, E.F. 3rd. (2002). Tissue response to expanded polytetrafluoroethylene and silicone implants in a rabbit model. Arch. Facial Plast. Surg., 4, 111-113 https://doi.org/10.1001/archfaci.4.2.111
- Butler, K.R., Benghuzzi, H.A. and Puckett, A. (2001). Morphometric evaluation tissue-implant reaction associated with ALCAP and TCP bioceramics in vivo. J. Invest. Surg., 14, 139-152 https://doi.org/10.1080/089419301300343291
- DeVoto, E. and Yokel, R.A. (1994). The biological speciation and toxicokinetics of aluminum. Environ. Health Perspect., 102, 940-951 https://doi.org/10.2307/3431916
- Ito, A., Okazaki, Y., Tateishi, T. and Ito, Y. (1995). In vitro biocompatibility, mechanical properties, and corrosion resistance of Ti-Zr-Nb-Ta-Pd and Ti-Sn-Nb-Ta-Pd alloys. J. Biomed. Mater. Res., 29, 893-899 https://doi.org/10.1002/jbm.820290715
- Jacob, J.T., Burgoyne, C.F., McKinnon, S.J., Tanji, T.M., LaFleur, P.K. and Duzman, E. (1998). Biocompatibility response to modified Baerveldt glaucoma drains. J. Biomed. Mater. Res., 43, 99-107 https://doi.org/10.1002/(SICI)1097-4636(199822)43:2<99::AID-JBM3>3.0.CO;2-G
- Johnson, R., Harrison, D., Tucci, M., Tsao, A., Lemos, M., Puckett, A., Hughes, J.L. and Benghuzzi, H. (1997). Fibrous capsule formation in response to ultra high molecular weight polyethylene treated with peptides that influence adhesion. Biomed. Sci. Instrum., 34, 47-52
- Kao, W.J., Zhao, Q.H., Hiltner, A. and Anderson, J.M. (1994). Theoretical analysis of in vivo macrophage adhesion and foreign body giant cell formation on polydimethylsiloxane low density polyethylene and polyetherurethanes. J. Biomed. Mater. Res., 28, 73-79 https://doi.org/10.1002/jbm.820280110
- Kim, M.-J., Kim, C.-W., Lim, Y.-J. and Heo, S.-J. (2006). Microrough titanium surface affects biologic response in MG63 osteoblast-like cells. J. Biomed. Mater. Res., 79A, 1023-1032 https://doi.org/10.1002/jbm.a.31040
- Lee, B.-H., Kim, Y.D. and Lee, K.H. (2003). XPS study of bioactive graded layer in Ti-In-Nb-Ta alloy prepared by alkali and heat treatments. Biomaterials, 24, 2257-2266 https://doi.org/10.1016/S0142-9612(03)00034-6
- Lee, Y.M., Lee, E.J., Yeom, D.S., Kim, D.S., Yee, S.T., Kim, B.I. and Cho, H.W. (2006). Relative biocompatibility evaluation of anodized titanium specimens in vivo and in vitro. J. Life Sci., 16, 302-309 https://doi.org/10.5352/JLS.2006.16.2.302
- Lehle, K., Lohn, S., Reinerth, G., Schubert, T., Preuner, J.G. and Birnbaum, D.E. (2004). Cytological evaluation of the tissue-implant reaction associated with subcutaneous implantation of polymers coated with titaniumcarboxonitride in vivo. Biomaterials, 25, 5457-5466 https://doi.org/10.1016/j.biomaterials.2003.12.055
- Li, D.J., Ohsaki, K., Cui, P.C., Ye, Q., Baba, K., Wang, Q.C., Tenshin, S. and Takano-Yamamoto, T. (1999). Thickness of fibrous capsule after implantation of hydroxyapatite in subcutaneous tissue in rats. J. Biomed. Mater. Res., 45, 322-326 https://doi.org/10.1002/(SICI)1097-4636(19990615)45:4<322::AID-JBM6>3.0.CO;2-2
- Matsuno, H., Yokoyama, A., Watari, F., Uo, M. and Kawasaki, T. (2001). Biocompatibility and osteogenesis of refractory metal implants, titanium, hafnium, niobium, tantalum and rhenium. Biomaterials, 22, 1253-1262 https://doi.org/10.1016/S0142-9612(00)00275-1
- McInnes, A. and Rennick, D.M. (1988). Interleukin 4 induces cultured monocytes/macrophages to form giant multinucleated cells. J. Exp. Med., 167, 598-611 https://doi.org/10.1084/jem.167.2.598
- McKay, G.C., Macnair, R., MacDonald, C. and Grant, M.H. (1996). Interactions of orthopaedic metals with an immortalized rat osteoblast cell line. Biomaterials, 17, 1339- 1344 https://doi.org/10.1016/0142-9612(96)88681-9
- Mohammadi, S., Esposito, M., Cucu, M., Ericson, L.E. and Thomsen, P. (2001). Tissue response to hafnium. J. Mater. Sci.: Mater. Med., 12, 603-611 https://doi.org/10.1023/A:1011237610299
- Murch, A.R., Grounds, M.D., Marshall, C.A. and Papadimitriou, J.M. (1982). Direct evidence that inflammatory multinucleate giant cells form by fusion. J. Pathol., 137, 177- 180 https://doi.org/10.1002/path.1711370302
- Naganawa, T., Ishihara, Y., Iwata, T., Koide, M., Ohguchi, M., Ohguchi, Y., Murase, Y., Kamei, H., Sato, N., Mizuno, M. and Noguchi, T. (2004). In vitro biocompatibility of a new titanium-29niobium-13tantalum-4.6zirconium alloy with osteoblast-like MG63 cells. J. Periodontol., 75, 1701-1707 https://doi.org/10.1902/jop.2004.75.12.1701
- Niinomi, M. (2003). Fatigue performance and cyto-toxicity of low rigidity titanium alloy, Ti-29Nb-13Ta-4.6Zr. Biomaterials, 24, 2673-2683 https://doi.org/10.1016/S0142-9612(03)00069-3
- Okazaki, Y. and Gotoh, E. (2005). Comparison of metal release from various metallic biomaterials in vitro. Biomaterials, 26, 11-21 https://doi.org/10.1016/j.biomaterials.2004.02.005
- Okazaki, Y., Gotoh, E., Manabe, T. and Kobayashi, K. (2004). Comparison of metal concentrations in rat tibia tissues with various metallic implants. Biomaterials, 25, 5913- 5920 https://doi.org/10.1016/j.biomaterials.2004.01.064
- Postiglione, L., Di Domenico, G., Ramaglia, L., Montagnani, S., Salzano, S., Di Meglio, F., Sbordone, L., Vitale, M. and Rossi, G. (2003). Behavior of SaOS-2 cells cultured on different titanium surfaces. J. Dent. Res., 82, 692-696 https://doi.org/10.1177/154405910308200907
- Rodriguez, R., Kim, K. and Ong, J.L. (2003). In vitro osteoblast response to anodized titanium and anodized titanium followed by hydrothermal treatment. J. Biomed. Mater. Res., 65A, 352-358 https://doi.org/10.1002/jbm.a.10490
- Rogers, S.D., Howie, D.W., Graves, S.E., Pearcy, M.J. and Haynes, D.R. (1997). In vitro human monocyte response to wear particles of titanium alloy containing vanadium or niobium. J. Bone Joint Surg. Br., 79, 311-315 https://doi.org/10.1302/0301-620X.79B2.7192
- Ryhnen, J., Kallioinen, M., Tuukkanen, J., Junila, J., Niemel, E., Sandvik, P. and Serlo, W. (1998). In vivo biocompatibility evaluation of nickel-titanium shape memory metal alloy: muscle and perineural tissue responses and encapsule membrane thickness. J. Biomed. Mater. Res., 41, 481-488 https://doi.org/10.1002/(SICI)1097-4636(19980905)41:3<481::AID-JBM19>3.0.CO;2-L
- Salthouse, T.N. (1984). Some aspects of macrophage behavior at the implant interface. J. Biomed. Mater. Res., 18, 395-401 https://doi.org/10.1002/jbm.820180407
- Schreiber, H., Keller, F., Kinzl, H.P., Hunger, H., Knofler, W., Rubling, U. and Merten, W. (1990). The question of the transmissibility of the results of subcutaneous tests of biomaterials from animals to humans. Z. Exp. Chir. Transplant Kunstliche Organe, 23, 23-25
- Shimojo, N., Kondo, C., Yamashita, K., Hoshino, T. and Hayakawa, T. (2007). Cytotoxicity analysis of a novel titanium alloy in vitro: adhesion, spreading, and proliferation of human gingival fibroblasts. Biomed. Mater. Eng., 17, 127- 135
- Thompson, G.J. and Puleo, D.A. (1996). Ti-6Al-4V ion solution inhibition of osteogenic cell phenotype as a function of differentiation time course in vitro. Biomaterials, 17, 1949-1954 https://doi.org/10.1016/0142-9612(96)00009-9
- Udipi, K., Ornberg, R.L., Thurmond II, K.B., Settle, S.L., Forster, D. and Riley, D. (2000). Modification of inflammotry response to implanted biomedical materials in vivo by surface bound superoxide dismutase mimics. J. Biomed. Mater. Res., 51, 549-560 https://doi.org/10.1002/1097-4636(20000915)51:4<549::AID-JBM2>3.0.CO;2-Z
- Walboomers, X.F., Croes, H.J.E., Ginsel, L.A. and Jansen, J.A. (1998). Microgrooved subcutaneous implants in the goat. J. Biomed. Mater. Res., 42, 634-641 https://doi.org/10.1002/(SICI)1097-4636(19981215)42:4<634::AID-JBM21>3.0.CO;2-O
- Ye, Q., Ohsaki, K., Li, K., Li, D.-J., Zhu, C.-S., Ogawa, T., Tenshin, S. and Takano-Yamamoto, T. (2001). Histological reaction to hydroxyapatite in the middle ear of rats. Auris Nasus Larynx, 28, 131-136 https://doi.org/10.1016/S0385-8146(00)00079-1