DOI QR코드

DOI QR Code

Isolation and Characterization of a Feather-Degrading Bacterium for Recycling of Keratinous Protein Waste

케라틴 단백질 폐기물의 재활용을 위한 우모부해 세균의 분리와 특성

  • Kim, Jung-Chul (Department of Microbiology, Pusan National University) ;
  • Kim, Min-Ju (Department of Microbiology, Pusan National University) ;
  • Son, Hyeng-Sik (Department of Microbiology, Pusan National University) ;
  • Ryu, Eun-Youn (Department of Microbiology, Pusan National University) ;
  • Jeong, Seong-Yun (Korea BIO-IT Foundry Center, Pusan National University) ;
  • Kim, Mi-A (Korea BIO-IT Foundry Center, Pusan National University) ;
  • Park, Geun-Tae (Research & University-Industry Cooperation, Pusan National University) ;
  • Son, Hong-Joo (School of Applied Life Science, Pusan National University) ;
  • Lee, Sang-Joon (Department of Microbiology, Pusan National University)
  • Published : 2007.12.31

Abstract

The aim of this study was to isolate chicken feather-degrading bacteria with high keratinolytic activity and to investigate cultural conditions affecting keratinolytic enzyme production by a selected isolate. A chicken feather-degrading bacterial strain CH3 was isolated from poultry wastes. Isolate CH3 degraded whole chicken feather completely within 3 days. On the basis of phenotypical and 16S rDNA studies, isolate CH3 was identified as Bacillus thuringiensis CH3. This strain is the first B. thuringiensis described as a feather degrader. The bacterium grew with an optimum at pH 8.0 and $37^{\circ}C$, where maximum keratinolytic activity was also observed. The composition of optimal medium for keratinolytic enzyme production was feather 0.1%, sucrose 0.7%, casein 0.3%, $K_2HPO_4$ 0.03%, $KH_2PO_4$ 0.04%, $MgCl_2$ 0.01% and NaCl 0.05%, respectively. The keratinolytic enzyme had a pH and temperature optima 9.0 and $45^{\circ}C$, respectively. The keratinolytic activity was inhibited ethylenediaminetetraacetic acid, phenylmethylsulfonyl fluoride, and metal ions like $Hg^{2+},\;Cu^{2+}\;and\;Zn^{2+}$. The enzyme activated by $Fe^{2+}$, dithiothreitol and 2-mercaptoethanol.

Keywords

References

  1. Wang X., Parsons C. M., 1997, Effect of processing systems on protein quality of feather meal and hog hair meals, Poultry Sci., 76, 491-496 https://doi.org/10.1093/ps/76.3.491
  2. Bradbury J.H., 1973., The structure and chemistry of keratin fibers, Adv. Prot. Chem., 67, 111-211
  3. Parry D. A. D., North A. C. T., 1998, Hard ${\alpha}-keratin$ intermediate filament chains: substructure of the N- and C-terminal domains and the predicted structure and function of the C-terminal domains of type I and type II chains, J. Structural Biol., 122, 67-75 https://doi.org/10.1006/jsbi.1998.3967
  4. Onifade A. A., Al-Sane N. A., Al-Musallam A. A., Al-Zarban S., 1998, Potentials for biotechnological applications of keratin degrading microorganisms and their enzymes for nutritional improvement of feathers and other keratins as livestock feed resources, Bioresour. Tech., 66, 1-11 https://doi.org/10.1016/S0960-8524(98)00033-9
  5. Papadopoulos M. C., El-Boushy A. R., Roodbeen A.E., Ketelaars E.H., 1986, Effects of processing time and moisture content on amino acid composition and nitrogen characteristics of feather meal, Animal Feed Sci. Tech., 14, 279-290 https://doi.org/10.1016/0377-8401(86)90100-8
  6. Ausubel F. A., Brent R., Kingston R. E., Moore D. D., Smith J. A., Seidman J. G., Struhl K., 1988, Current protocols in molecular biology, John Wiley & Sons, Inc., 122-145pp
  7. Lane D. J., 1991, Nucleic acid techniques in bacterial systematics, John Wiley and Sons, 115-175pp
  8. Wawrzkiewicz K., Lobarzewski J., Wolski Y., 1987, Intracellular keratinase of Trichlophyton gallinae, J. Med. Veterinary Mycol., 25, 261-268 https://doi.org/10.1080/02681218780000601
  9. Friedrich J., Gradisar R., Mandin D., Chaumont J. P., 1999, Screening fungi for synthesis of keratinolytic enzymes, Lett. Appl. Microbiol., 28, 127- 130 https://doi.org/10.1046/j.1365-2672.1999.00485.x
  10. Bradford M. M., 1976, A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding, Anal. Biochem., 72, 248-254 https://doi.org/10.1016/0003-2697(76)90527-3
  11. Williams C. M., Richter C. S., MacKenzie J. M., Shih J. C. H., 1990, Isolation, identification, and characterization of a feather-degrading bacterium, Appl. Environ. Microbiol., 56, 1509-1515
  12. Bockle B., Galunski B., Muller R., 1995, Characterization of a keratinolytic serine protease from Streptomyces pactum DSM40530, Appl Environ Microbiol., 61, 3705-3710
  13. Williams C. M., Shih J. C. H., 1989, Enumeration of some bacterial groups in thermophilic poultry waste digesters and enrichment of a feather-degrading culture, J. Appl. Bacteriol., 67, 25-35 https://doi.org/10.1111/j.1365-2672.1989.tb04951.x
  14. Santos R. M. D. B., Firmino A. A. P., de Sa C. M., Felix C. R., 1996, Keratinolytic activity of Aspergillus fumigatus Fresenius, Curr. Microbiol., 33, 364- 370 https://doi.org/10.1007/s002849900129
  15. Shama G., Berwick P. G., 1991, Production of keratinolytic enzymes in a rotating frame bioreactor, Biotechnol. Tech., 5, 359-362
  16. Rozs M., Manczinger L., Vagvolgi Cs., Kevei F., 2001, Secretion of a trypsin-like thiol protease by a new keratinolytic strain of Bacillus licheniformis, FEMS Microbiol., 179, 258-265
  17. Letourneau F., Soussotte V., Bressollier P., Branland P., Verneuli B., 1998, Keratinolytic activity of Streptomyces sp. S.K10-02: a new isolated strain, Lett. Appl. Microbiol., 26, 77-80 https://doi.org/10.1046/j.1472-765X.1998.00281.x
  18. Riffe, A., Brandelli A., 2002, Isolation and characterization of a feather-degrading bacterium from the poultry processing industry, J. Ind. Microbiol. Biotechnol., 29, 255-258 https://doi.org/10.1038/sj.jim.7000307