International Journal of Fuzzy Logic and Intelligent Systems, vol. 7, no. 4, December 2007 pp. 274-278

On supporting full-text retrievals in XML query

Dong-Kweon Hong

Dept. of Computer Eng., Keimyung University, Daegu, Korea

Abstract

As XML becomes the standard of digital data exchange format we need to manage a lot of XML data effectively. Unlike tables
in relational model XML documents are not structural. That makes it difficult to store XML documents as tables in relational
model. To solve these problems there have been significant researches in relational database systems. There are two kinds of
approaches: 1) One way is to decompose XML documents so that elements of XML match fields of relational tables. 2) The
other one stores a whole XML document as a field of relational table. In this paper we adopted the second approach to store
XML documents because sometimes it is not easy for us to decompose XML documents and in some cases their element order
in documents are very meaningful. We suggest an efficient table schema to store only inverted index as tables to retrieve
required data from XML data fields of relational tables and shows SQL translations that correspond to XML full-text retrievals.
The functionalities of XML retrieval are based on the W3C XQuery which includes full-text retrievals. In this paper we show
the superiority of our method by comparing the performances in terms of a response time and a space to store inverted index.

Experiments show our approach uses less space and shows faster response times.

Key Words : XML, XQuery, full-text retrievals

1. Introduction

XML(Extensible Markup language) became a worldwide
standard format for digital information on the internet[1].
Traditional database systems face many new difficulties when
dealing with XML. During the last several decades relational
DBMS have been improved continuously in technical aspects
so that it can handle queries on structural relational tables
very efficiently[2]. However a query language on XML,
XQuery, is much more diverse, complex and powerful than
the standard query language on relational DBMS. It even in-
cludes full-text retrieval functionality with some structural
queries[1]{4}. In Jan of 2007 W3C (Worldwide Web
Consortium) has published the final recommendation of
XQuery full-text which is the essential part of queries on
XML[1]. Due to its semi-structured natures of XML docu-
ments full-text retrieval capability has received much attention
from the XQuery standardization groups. A full-text retrieval
for plain text has been studied long mainly from Information
Retrieval(IR)[3]. However a full-text retrieval for XML is a
new research area that requires the research results of
Information Retrieval and database research and needs to con-
sider the element nesting of XML

documents[4][5]{6]. Main research directions on full-text re-
trieval for XML in relational environment are using existing
relational model[6][7] and creating new XML data model. In
this paper we are focusing on using existing relational model
that has been applied widely to many areas.

Manuscript received Aug. 30, 2007; revised Dec. 10, 2007.
This work was supported by the research grant of the
Keimyung University in 2007.

274

Using inverted index is the most popular approach for
full-text search in Information Retrieval[2]. It extracts mean-
ingful keyword and phrases from documents and stores them
in data structure like B-tree to get the document and the loca-
tion of a searching keyword. In traditional Information
Retrieval user supply a keyword to look for information that
are related to searching keyword. However submitting only a
keyword sets of keyword to look for information from XML
documents is not a proper approach. Keyword itself is not
enough to utilize the advantages of XML characteristic. If a
search keyword is accompanied with a partial or full path we
can search the required information more quickly and
precisely.

In order to utilize all the advantages of XML most of
full-text queries will use path information with searching
keyword. Even the full-text search requires only some part of
XML documents when it returns it as a result. Sometimes the
results are combined with some other parts of XML
documents. These requirements cause us to store much more
information than that of a plain text when we deal with XML
full-text retrievals{[7][8].

The paper is organized as follows: section 2 gives surveys
of several approaches supporting full-text retrieval of XML
documents in relational databases. Section 3 describes require-
ments of full-text retrieval in XML documents based on W3C
XQuery documents. By closely looking at XQuery full-text
use case document we identify more advanced full-text re-
trieval functions that are specific to XML and suggest table
schema to support XML queries. Section 4 analyzes the table
schema that we suggested in section 3 and shows the perform-
ance comparisons with previous approaches. Section 5 men-
tions conclusions and directions for future research.

2. Related Works

One of the most widely used method to support full-text
retrieval in Information Retrieval is inverted index ap-
proach[7]. It extracts the required information such as the lo-
cation of a keyword or count of a keyword occurrences and
builds indexes such as B-tree or hashing by using the ex-
tracted information. A full-text search uses the indexes to look
for the location or occurrence count of a search keyword.
There are several ways to support full-text retrievals for XML
documents. In [Fig. 1] we can see several approaches that im-
plementing full-text retrievals.

universi

XML fuli-text retrigval
e

/lac{JIty)

RA ©©

instructor

y

query
Processor

00 DBMS [Native XML Storage | | R DBMS

Fig. 1. XML full-text query processing in different
DBMS

In the paper of Florescu at el [4] they introduced the way
to support full-text retrieval using relational databases. To the
best of our knowledge the paper is the first one that seriously
studied a method to store XML inverted index in relational ta-
bles and introduced many open problems. In their approach
they built tables for each pair of keyword and element to sup-
port keyword search which is accompanied with the name or
paths of elements. For example if we are looking for XML
documents that have a keyword "XSL" in <abstract> elements
we just need to look through the table named "XSL_abstract”
in their approach. This will reduce the search space dramati-
cally and will increase the preciseness of the results a lot. In
order to support element traversals for containment queries for
XML documents they suggested the concept of binary table.
To check the containment relationship for parent, child, and
sibling of a element they heavily use join operations among
binary tables.

In the research of a containment query [5] they identified
the popularity of containment query in XML query and sug-
gested an efficient method to implement it by using the fol-
lowing relational schema.

ELEMENTS(term, docno, begin, end, level)
TEXTS(term, docno, wordno, level)

Here the value of begin, end and wordno are generated by

On supporting full-text retirevals in XML query

using a labeling scheme which use the word number of a
document. They store all keywords into TEXTS table and all
elements into ELEMENTS table. By comparing the value of
"wordno", "begin", "end" and "level" they can check the con-
tainment relationship. Here again join operations are used a lot
to check the relationships. There has been many other re-
searches to store and query XML document using relational
model [9][10][11]. However their research didn't consider
XML full-text queries.

3. XML full-text retrievals

In this section we suggest a method to support XML
full-text retrievals using relational database systems.

3.1 Requirements of full-text retrievals

W3C XQuery full-text requirement documents and use case
documents describe many full-text search functions on XML
documents{1]. After closely analyzing the documents we iden-
tified several key full-text functions and selected several oper-
ations as representatives of the requirements.

Table 1. representative operations for XML full-text queries

No. | representative operations| functionalities results
. , , keyword docid,
1 contains(text(), 'XML') search clementid
) TITLE[contains(text(), docid,
"ACT")] elementid

. docid,

3 |//SCENE/*/LINE[contains .
elementid

(text(), 'love")]

4 /PLAY/TITLE/'The phrase docid,
comedy of Errors' search elementid

id,

5 | /SPEAKER='ACT docid,
elementid

As we can see in [Table 1] information search in XML
usually use a keyword or a phrase with a path in general.
Also after we find the required information we have to return
docid and elementid of the results. While processing these
kinds search we need to check containment relationships, pa-
rent and sibling relationships among elements very often.
From now on we only consider these operations for our
experimentations.

3.2 Relational schema for inverted index

We store XML documents in the field of the following re-
lational table. In each schema the underlined word(s) represent
the primary key for each table.

XML DOCUMENTS(ID, docname, isidx, XML _contents_id)

275

International Journal of Fuzzy Logic and Intelligent Systems, vol. 7, no. 4, December 2007

For each XML document we extract index informations and
assign a sequences of number for each word. Relational table
schema for our inverted index are as follows.

<Index table schema>

// save keywords

WORDINDEX(TERM, DOCID, POSITION)

/* save element information */

EINDEX(TERM, DOCID, STARTPQOS, ENDPOS,
ATHID, DEPTH)

/* save attribute information */

AINDEX(TERM, DOCID, PATHID, VALUE)

/* save value text information */

TINDEX(DOCID, STARTPQS, ENDPQOS, PATHID
DEPTH, VALUE)

/* save path information */

PINDEX(DOCID, PATHID, PATH)

SAMPLE DATA
<dblp>

<mastersthesis mdate="2003-08-10"
key="ms/Brown03"> '
<author> Hong Gil Dong</author>
<title>The Full Text search using
RDBMS</title>
<year>2003</year>
<school>Seoul University</school>
</mastersthesis>

</dblp>

With the previous table schema and the sample XML docu-
ment we can build the graph representation and table instances
as in the following.

4 5
author tittle

Hong Gil Dong

6 £
year
2003 Seoul University

ms/Brown03 The full text search using RDBMS
2003-08-14

Fig. 2. Graph representation of sample XML document
with pathid

In the following tables POSITION, STARTPOS, and
ENDPOS values are assigned with the sequence numbers of
word in a documents. For example the word 'full' appears as
the 13th word in the document. In the AINDEX table the re-
cord ('mdate’, 1, 3, '2003-03-10") means mdate attribute ap-
pears in the document that has the value of DOCID 1. And
its location in the document is on the path of PATHID 3. The
record (‘author’, 1, 7, 10, 4, 1) in the EINDEX says that ele-
ment author starts in the 7th word and finishes 22nd word.
And it is on the path of PATHID 4 and its distance from the
root is 1.

276

AINDEX
TERM DOCID PATHID VALUE
mdate 1 2 2003-08-10
key 1 3 ms/Brown03
PINDEX
DOCID PATHID PATH
1 0 #/dblp
1 1 #/dblp#/mastersthesis
1 2 #/dblp#/mastersthesis#/@mdate
1 3 #/dblp#/mastersthesis#/@key
1 4 #/dblp#/author
1 5 #/dblp#/title
1 6 #/dblp#/year
1 7 #/dblp#/school
WORDINDEX
TERM DOCID POSITION
Hong 1 8
Gil 1 9
Dong 1 10
full 1 13
text i 14
search 1 15
EINDEX
TERM | DOCID | STARTPOS | ENDPOS | PATHID | DEPTH
dblp 1 1 22 0 0
mastérsthes |) ” 1 I
is
author 1 7 10 4 1
TINDEX

DOCID |{STARTPOS

ENDPOS | PATHID DEP'E‘ VALUE

10

Hong Gil

4 2 Dong

17

The Full
Text search
using
RDBMS

3.3 SQL transformation of full-text retrieval

We can transform the full-text retrievals of Table 1 into the
SQL queries by using the relational schema of section 3.2.

Query 1: /* contains(text(), XML') */
CREATE OR REPLACE VIEW KY XML AS

SELECT DOCID, POSITION

FROM WORDINDEX

WHERE TERM LIKE '"%XML%'";
SELECT DISTINCT E.DOCID, E.TERM, E.STARTPOS
FROM EINDEX E, KY XML KX
WHERE E.DOCID=KX.DOCID AND

KX.POSITION BETWEEN E.STARTPOS AND

E.ENDPOS;

Query 2: /* //TITLE[contains(text(), 'ACT'] */
SELECT E.DOCID, E.TERM, E.STARTPOS
FROM EINDEX E, PINDEX P, TINDEX T
WHERE E.DOCID=P.DOCID AND T.DOCID=E.DOCID AND
PPATH LIKE %#%/TITLE EPATHID=P.PATHID
AND
P.PATHID=T.PATHID AND T.STARTPOS >=
E.STARTPOS AND
E.ENDPOS >= T.ENDPOS AND T.VALUE LIKE
'%ACT%';

Query 3: /* //SCENE/*/LINE[contains(text(), 'love’)] */
SELECT E.DOCID, E.TERM, E.STARTPOS
FROM EINDEX E, PINDEX P, TINDEX T
WHERE E.DOCID=P.DOCID AND P.DOCID=T.DOCID AND
P.PATH LIKE #%/SCENE#/%#/LINE' AND
E.PATHID=P.PATHID
P.PATHID=T.PATHID AND
T.STARTPOS >= E.STARTPOS AND E.ENDPOS
>= T.ENDPOS AND
T.VALUE LIKE '%love%';

AND

4. Analysis and performance evaluations

We compared our approach of section 3 with the one sug-
gested in the paper [4]. For the naming convenience we
named our approach as FTS (full-text with string based ap-
proach) and the one in the paper of Florescu [4] as FTJ
(full-text with join based approach). FTJ uses a table for each
pair of key word and an element. We found in our prelimi-
nary experiments the number of table with FTJ might be over
several tens of thousands. This is very unrealistic in real
situations. Instead we use the following schema that is slight
modification of the one used in the paper of Florescu [4].

<Table schema of FTJ>

ELEMENTS(ELENAME, DOCID, ELID, START, END)
WORD_TYPE(WORDTYPE, DOCID, ELID, DEPTH,
LOCATION)

BINARY(DOCID, TARGET, SOURCE, VALUE)

On supporting full-text retirevals in XML query

With the schema above we can transform the XML queries
of Table 1 into the following SQL queries in FTJ.

Query 1:
SELECT ELENAME, DOCID, ELID
FROM ELEMENTS
WHERE (DOCID, ELID)
N
(SELECT DOCID, ELID
FROM WORD_TYPE
WHERE WORD TYPE LIKE '%XML%');
Query 2:
SELECT DISTINCT ELENAME, DOCID, ELID
FROM ELEMENTS
WHERE (DOCID, ELID)
IN (SELECT DISTINCT DOCID, TARGET
FROM TITLE
WHERE VALUE LIKE '%ACT%");

Query 3: Not available.
When we compare the performance of FTS and FTJ we
have used the data that can be found in http://www.oa-

sis-open.org. The nature of the data is explained in Table 2.

Table 2. The characteristics of sample XML data

No. of doc
Shakespeare's work 37

Size
7.53M

sample data name Avg. Depth

371

4.1 Spaces to store inverted indexes

Both approaches maintain several tables to support full-text
queries. The size of spaces to maintain tables have been meas-
ured as in Table 3. Total space for FTS requires just one
fourth of FTJ. When we closely speculate the data in both ta-
ble schema FTS stores much less data by storing path in-
formation as strings.

Table 3. Table spaces for FTS and FTJ

FTS FTJ
TABLE NAME SIZE TABLE NAME SIZE
EINDEX 3.719 ELEMENTS 4.700
AINDEX 0.000 WORD_TYPE 91.432
PINDEX 6.975 BINARY 8.271
WORDINDEX 6.851
TINDEX 7.671
TOTAL 25.216 TOTAL 104.402

4.2 Response times for keyword searches

In the same computing environment we measured the re-
sponse times of both approaches for queries Q1, Q2, and Q3
as in Table 9. We haven't compared Q4, Q5, and Q6 because
the schema for FTJ have been developed for keyword search

277

International Journal of Fuzzy Logic and Intelligent Systems, vol. 7, no. 4, December 2007

and they didn't mention phrase search. Even though the trans-
formed SQL queries for FTS look more complicated than
those of FTJ we can see that FTS performs much better than
FTJ in [Table 4].

4.3 Phrase search functionality of FTS

Table 4. Response times (sec.) of FTS and FTJ for full-text
queries

Query | FTS FTJ RESULTS
Q1 0.901 8.662 | docid, element id, element name
Q2 0.40 4.286 SPEECH docid, clement id
Q3 0.40 X LINE docid, element id

The schema that we suggested in section 3 is for keyword
and phrase search together. We can also transform the phrase
search queries in Table 1 into SQL queries with FTS. Unlike
the keyword search we use 'TINDEX' for phrase searches. For
example query 4 in Table 1 can be transformed into SQL
query as follows.

Query 4:
/* /[PLAY/TITLE/The comedy of Errors' */
SELECT E.DOCID, E.TERM, E.STARTPOS
FROM EINDEX E, PINDEX O, TINDEX T
WHERE E.DOCID=P.DOCID AND T.DOCID=E.DOCID AND
P.PATH="#/PLAY#TITLE' AND
E.PATHID=P.PATHID AND
P.PATHID=T.PATHID AND E.PATHID=(T.DEPTH
- 1) AND
T.STARTPOS >= E.STARTPOS AND E.ENDPOS
>= T.ENDPOS AND
T.VALUE=The Comedy of Errors’;

References

[1.] http://www.w3c.org

[2] Hector Garcia-Molina, J. Ullman, J. Widom.: Database
Systems: The Complete book. Prentice Hall, 2002.

[3] Ricardo Baeza-Yates, Berthier Riberiro-Neto,: Modern
Information Retrieval, Addison Wesley, 1999.

278

[4] D. Florescu, D. Kossmann, and I Manolescu,
"Integrating keyword search into XML query process-
ing", WWW9/Computer Networks, pp.119-135, 2000.

[5] C. Zhang, J. Naughton, D. DeWitt, Q. Lwo, G.
Lohman."On supporting Containment Queries in
Relational —Database Management Systems". ACM

SIGMOD, May Santa Barbara, CA, 2001.

[6] Tan-Macro Bremer, Michael Gertz."XQuery/IR: Integrating
XML Document and Data Retrieval", Proceedings of the
5th International Workshop on the Web and Databases,
pp 1-6, 2002.

[7]1 N.Fubr, K.Grossjohann. "XIRQL: An extension of XQL
for information Retrieval", Proceedings of SIGIR, 2001.

[8] J. Shanmugasundaram, J. Kienan, E. Shekita, C. Fan,
John Funderburk, "Querying XML views of Relational
Data", Proceedings of the 27th VLDB Conference, 2001.

[9] J. Shanmugasundaram, E. Shekita, R. Barr, M. Carey,

B.Lindsay, H. Pirahesh, B. Reinwald, "Efficiently

Publishing Relational Data as XML Documents",

Proceedings of the 26th VLDB conference, 2000.

L. Fegaras, R. Elmasri, "Query Engines for
Web-Accessible XML Data", Proceedings of the 27th
VLDB Conference, 2001.

[11] L Tatarinov, S. Viglas, K.Bayer, J. Shanmugasundaram,
E. Shekita, C. Zhang, "Storing and Querying Ordered
XML Using a Relational Database System", Proceeding
of ACM SIGMOD, 2002.

[10]

Dong_Kweon Hong

He received MS. and Ph.D degree from CIS
department of University of Florida,
Gainesville, USA in 1992 and 1995. From
1997 to present, he is a professor in
Computer Engineering department of
Keimyung University. His research interests
are XML, databases and web technologies.

: 053-580-5281
Fax : 053-580-5165
: dkhong@krmu.ac.kr

