Fuzzy pairwise γ -irresoluteness

Young Bin Im

Department of Mathematics, Seonam University, Namwon 590-711, Korea

Abstract

We characterize a fuzzy pairwise γ -irresolute continuous mapping on a fuzzy bitopological space.

Key words: fuzzy pairwise γ -irresolute continuous mapping, (τ_i, τ_j) - γ -interior, (τ_i, τ_j) - γ -closure

1. Introduction

Azad [1], Singal and Prakash [9] introduced the concepts of a fuzzy semiopen set and a fuzzy preopen set on a fuzzy topological space respectively, and characterized a fuzzy semicontinuous mapping and a fuzzy precontinuous mapping on a fuzzy topological space. Weaker forms of a fuzzy pairwise continuity on a fuzzy bitopological space as a natural generalization of a fuzzy topological spaces have been considered by several mathematicians using a (τ_i, τ_j) -fuzzy semiopen set and a (τ_i, τ_j) -fuzzy preopen set. In particular, Sampath Kumar [7, 8] defined a (τ_i, τ_j) -fuzzy semiopen set and a (τ_i, τ_j) -fuzzy preopen set, and characterized a fuzzy pairwise semicontinuous mapping and a fuzzy pairwise precontinuous mapping on a fuzzy bitopological space.

Recently, Hanafy [2] defined a fuzzy γ -open set, and studied a fuzzy γ -continuous mapping on a fuzzy topological space. The author et al. [3, 5] defined a fuzzy γ -irresolute (fuzzy γ -irresolute open) mapping on a fuzzy topological space and investigated some of their properties. Also, he et al. [4, 6] defined a fuzzy pairwise γ -continuous mapping and a fuzzy pairwise pre-irresolute mapping on a fuzzy bitopological space and characterized.

In this paper, we characterize a fuzzy pairwise γ -irresolute continuous mapping on a fuzzy bitopological space.

2. Preliminaries

A system (X, τ_1, τ_2) consisting of a set X with two fuzzy topologies τ_1 and τ_2 on X is called a *fuzzy bitopological space* [fbts]. Throughout this paper, the indices i, j take values in $\{1, 2\}$ with $i \neq j$.

Let μ be a fuzzy set in a fbts (X, τ_1, τ_2) . Then $\tau_i - fo$ set μ and $\tau_j - fc$ set μ mean τ_i -fuzzy open set μ and τ_j -fuzzy closed set μ respectively. Also, τ_i — Int μ and τ_j — Cl μ mean the interior and closure of μ for the fuzzy topologies τ_i and τ_j respectively.

A mapping $f:(X,\tau_1,\tau_2)\to (Y,\tau_1^*,\tau_2^*)$ is fuzzy pairwise continuous [fpc] if and only if the induced mapping $f:(X,\tau_k)\to (Y,\tau_k^*)$ is fuzzy continuous for (k=1,2).

Definition 2.1. [7, 8] Let μ be a fuzzy set of a fbts X. Then μ is called;

- (1) (τ_i, τ_j) -fuzzy semiopen $[(\tau_i, \tau_j) fso]$ in X if $\mu \le \tau_j \text{Cl}(\tau_i \text{Int } \mu)$,
- (2) (τ_i, τ_j) -fuzzy semiclosed $[(\tau_i, \tau_j) fsc]$ in X if $\tau_j \operatorname{Int}(\tau_i \operatorname{Cl} \mu) \leq \mu$,
- (3) (τ_i, τ_j) -fuzzy preopen $[(\tau_i, \tau_j) fpo]$ in X if $\mu \le \tau_i \operatorname{Int}(\tau_j \operatorname{Cl} \mu)$,
- (4) (τ_i, τ_j) -fuzzy preclosed $[(\tau_i, \tau_j) fpc]$ in X if $\tau_i \text{Cl}(\tau_j \text{Int } \mu) \leq \mu$.

Definition 2.2. [6] Let μ be a fuzzy set of a fbts X. Then μ is called;

(1) a
$$(\tau_i, \tau_j)$$
-fuzzy γ -open $[(\tau_i, \tau_j) - f\gamma_O]$ set of X if $\mu \leq \tau_j - \operatorname{Cl}(\tau_i - \operatorname{Int}\mu) \vee \tau_i - \operatorname{Int}(\tau_j - \operatorname{Cl}\mu)$, (2) a (τ_i, τ_j) -fuzzy γ -closed $[(\tau_i, \tau_j) - f\gamma_C]$ set of X if $\tau_i - \operatorname{Cl}(\tau_j - \operatorname{Int}\mu) \wedge \tau_j - \operatorname{Int}(\tau_i - \operatorname{Cl}\mu) \leq \mu$.

Remark that every $(\tau_i, \tau_j) - fso$ set is a $(\tau_i, \tau_j) - f\gamma o$ set and every $(\tau_i, \tau_j) - fpo$ set is a $(\tau_i, \tau_j) - f\gamma o$ set. The converses need not be true in general [6].

Proposition 2.3. [6] (1) The union of $(\tau_i, \tau_j) - f\gamma_0$ sets is a $(\tau_i, \tau_j) - f\gamma_0$ set.

(2) The intersection of $(\tau_i, \tau_j) - f\gamma c$ sets is a $(\tau_i, \tau_j) - f\gamma c$ set.

The intersection (union) of any two $(\tau_i, \tau_j) - f\gamma o$ $((\tau_i, \tau_j) - f\gamma c)$ sets need not be a $(\tau_i, \tau_j) - f\gamma o$ $((\tau_i, \tau_j) - f\gamma c)$ set [6].

Proposition 2.4. [6] Let μ be a fuzzy set of a fbts X.

- (1) If μ is a $(\tau_i, \tau_j) f\gamma o$ and $\tau_j fc$ set, then μ is a $(\tau_i, \tau_j) fso$ set.
- (2) If μ is a $(\tau_i, \tau_j) f\gamma c$ and $\tau_j fo$ set, then μ is a $(\tau_i, \tau_j) fsc$ set.

Proposition 2.5. [6] Let (X, τ_1, τ_2) and (Y, η_1, η_2) be fbts's such that X is product related to Y. Then the product $\mu \times \nu$ of a $(\tau_i, \tau_j) - f\gamma o$ set μ of X and a $(\eta_1, \eta_2) - f\gamma o$ set ν of Y is a $(\sigma_i, \sigma_j) - f\gamma o$ set in the fuzzy product bitopological space $(X \times Y, \sigma_1, \sigma_2)$, where σ_k is the fuzzy product topology generated by τ_k and η_k (k = 1, 2).

Definition 2.6. [6] Let μ be a fuzzy set of a fbts X.

(1) The $(\tau_i, \tau_j) - \gamma$ -interior of μ [$(\tau_i, \tau_j) - \gamma$ Int μ] is defined by

$$(\tau_i, \tau_j) - \gamma \operatorname{Int}\mu = \sup \{ \nu \mid \nu \leq \mu, \ \nu \text{ is a } (\tau_i, \tau_j) - f \gamma o \text{ set} \}.$$

(2) The $(\tau_i,\tau_j)-\gamma-$ closure of μ [$(\tau_i,\tau_j)-\gamma$ Cl μ)] is defined by

$$(\tau_i, \tau_i) - \gamma \operatorname{Cl}\mu = \inf\{\nu \mid \nu > \mu, \nu \text{ is a } (\tau_i, \tau_i) - f\gamma c \text{ set}\}.$$

Obviously, $(\tau_i, \tau_j) - \gamma \operatorname{Cl}\mu$ is the smallest $(\tau_i, \tau_j) - f\gamma c$ set which contains μ , and $(\tau_i, \tau_j) - \gamma \operatorname{Int}\mu$ is the largest $(\tau_i, \tau_j) - f\gamma o$ set which is contained in μ . Also, $(\tau_i, \tau_j) - \gamma \operatorname{Cl}\mu = \mu$ for any $(\tau_i, \tau_j) - f\gamma c$ set μ and $(\tau_i, \tau_j) - \gamma \operatorname{Int}\mu = \mu$ for any $(\tau_i, \tau_j) - f\gamma o$ set μ .

Hence we have

$$\tau_i - \operatorname{Int}\mu \le (\tau_i, \tau_j) - \operatorname{sInt}\mu \le (\tau_i, \tau_j) - \gamma \operatorname{Int}\mu \le \mu,$$

$$\mu < (\tau_i, \tau_i) - \gamma \operatorname{Cl}\mu \le (\tau_i, \tau_i) - \operatorname{sCl}\mu \le \tau_i - \operatorname{Cl}\mu$$

and

$$\tau_i - \ \operatorname{Int} \mu \leq (\tau_i, \tau_j) - \ \operatorname{pInt} \mu \leq (\tau_i, \tau_j) - \gamma \ \operatorname{Int} \mu \leq \mu,$$

$$\mu \le (\tau_i, \tau_j) - \gamma \operatorname{Cl}\mu \le (\tau_i, \tau_j) - \operatorname{pCl}\mu \le \tau_i - \operatorname{Cl}\mu.$$

Definition 2.7. [6, 7, 8] Let $f: (X, \tau_1, \tau_2) \to (Y, \tau_1^*, \tau_2^*)$ be a mapping. Then f is called;

- (1) a fuzzy pairwise semicontinuous [fpsc] mapping if $f^{-1}(\nu)$ is a $(\tau_i, \tau_j) fso$ set of X for each $\tau_i^* fo$ set ν of Y,
- (2) a fuzzy pairwise precontinuous [fppc] mapping if $f^{-1}(\nu)$ is a $(\tau_i, \tau_j) fpo$ set of X for each $\tau_i^* fo$ set ν of Y.
- (3) a fuzzy pairwise γ -continuous $[fp\gamma c]$ mapping if $f^{-1}(\nu)$ is a $(\tau_i, \tau_j) f\gamma o$ set of X for each $\tau_i^* fo$ set ν of Y.

From the above definitions it is clear that every fpsc is a $fp\gamma c$ mapping and every fppc is a $fp\gamma c$ mapping. But the converses are not true in general [6].

Theorem 2.8. [6] Let $f:(X,\tau_1,\tau_2)\to (Y,\tau_1^*,\tau_2^*)$ be a mapping. Then the followings are equivalent:

- (1) f is $fp\gamma c$.
- (2) The inverse image of each $\tau_i^* fc$ set of Y is a $(\tau_i, \tau_i) f\gamma_i$ set of X.
- (3) $f((\tau_i, \tau_j) \gamma \operatorname{Cl}\mu) \le \tau_i^* \operatorname{Cl}(f(\mu))$ for each fuzzy set μ of X.
- (4) $(\tau_i, \tau_j) \gamma \operatorname{Cl}(f^{-1}(\nu)) \leq f^{-1}(\tau_i^* \operatorname{Cl}\nu)$ for each fuzzy set ν of Y.
- (5) $f^{-1}(\tau_i^* \text{Int}\nu) \le (\tau_i, \tau_j) \gamma \text{Int}(f^{-1}(\nu))$ for each fuzzy set ν of Y.

Proposition 2.9. [6] Let $f:(X,\tau_1,\tau_2)\to (Y,\tau_1^*,\tau_2^*)$ be a $fp\gamma c$ mapping. Then for each fuzzy set ν of Y,

$$f^{-1}(\tau_i^* - \operatorname{Int}\nu) \le \tau_j - \operatorname{Cl}(\tau_i - \operatorname{Int}(f^{-1}(\nu))) \vee \tau_i - \operatorname{Int}(\tau_j - \operatorname{Cl}(f^{-1}(\nu))).$$

Proposition 2.10. Let $f:(X,\tau_1,\tau_2)\to (Y,\tau_1^*,\tau_2^*)$ be a $fp\gamma c$ mapping. Then for each fuzzy set ν of Y,

$$\tau_i - \operatorname{Cl}(\tau_j - \operatorname{Int}(f^{-1}(\nu))) \wedge \tau_j - \operatorname{Int}(\tau_i - \operatorname{Cl}(f^{-1}(\nu)))$$

$$\leq f^{-1}(\tau_i^* - \operatorname{Cl}\nu).$$

Proof. Let ν be a fuzzy set of Y. Then $\tau_i^* - \operatorname{Cl}\nu$ is a $(\tau_i^*, \tau_j^*) - f\gamma c$ set of Y and so $f^{-1}(\tau_i^* - \operatorname{Cl}\nu)$ is a $(\tau_i, \tau_j) - f\gamma c$ set of X. Hence

$$\begin{aligned} &\tau_i - \operatorname{Cl}(\tau_j - \operatorname{Int}(f^{-1}(\nu))) \wedge \tau_j - \operatorname{Int}(\tau_i - \operatorname{Cl}(f^{-1}(\nu))) \\ &\leq \tau_i - \operatorname{Cl}(\tau_j - \operatorname{Int}(f^{-1}(\tau_i^* - \operatorname{Cl}\nu))) \wedge \\ &\tau_j - \operatorname{Int}(\tau_i - \operatorname{Cl}(f^{-1}(\tau_i^* - \operatorname{Cl}\nu))) \\ &\leq f^{-1}(\tau_i^* - \operatorname{Cl}\nu). \end{aligned}$$

Proposition 2.11. Let $f:(X,\tau_1,\tau_2)\to (Y,\tau_1^*,\tau_2^*)$ be a $fp\gamma c$ mapping. Then for each fuzzy set μ of X,

$$f(\tau_i - \operatorname{Cl}(\tau_j - \operatorname{Int}\mu) \wedge \tau_j - \operatorname{Int}(\tau_i - \operatorname{Cl}\mu))$$

 $\leq \tau_i^* - \operatorname{Cl}(f(\mu)).$

Proof. Let μ be a fuzzy set of X. Then, by the above theorem,

$$\tau_{i} - \operatorname{Cl}(\tau_{j} - \operatorname{Int}\mu) \wedge \tau_{j} - \operatorname{Int}(\tau_{i} - \operatorname{Cl}\mu)$$

$$\leq \tau_{i} - \operatorname{Cl}(\tau_{j} - \operatorname{Int}(f^{-1}(f(\mu)))) \wedge$$

$$\tau_{j} - \operatorname{Int}(\tau_{i} - \operatorname{Cl}(f^{-1}(f(\mu))))$$

$$\leq f^{-1}(\tau_{i}^{*} - \operatorname{Cl}(f(\mu))).$$

and

$$f(\tau_i - \operatorname{Cl}(\tau_j - \operatorname{Int}\mu) \wedge \tau_j - \operatorname{Int}(\tau_i - \operatorname{Cl}\mu))$$

$$\leq f(f^{-1}(\tau_i^* - \operatorname{Cl}(f(\mu))))$$

$$\leq \tau_i^* - \operatorname{Cl}(f(\mu)).$$

Proposition 2.12. [6] Let (X_1, τ_1, τ_2) , $(X_2, \tau_1^*, \tau_2^*)$, (Y_1, η_1, η_2) and $(Y_2, \eta_1^*, \eta_2^*)$ be fbts's such that X_1 is product related to X_2 . Then the product $f_1 \times f_2 : (X_1 \times X_2, \theta_1, \theta_2) \to (Y_1 \times Y_2, \sigma_1, \sigma_2)$, where θ_k (respectively σ_k) is the fuzzy product topology generated by τ_k and τ_k^* (respectively η_k and η_k^*) (k = 1, 2), of $fp\gamma c$ mappings $f_1 : (X_1, \tau_1, \tau_2) \to (Y_1, \eta_1, \eta_2)$ and $f_2 : (X_2, \tau_1^*, \tau_2^*) \to (Y_2, \eta_1^*, \eta_2^*)$, is a $fp\gamma c$ mapping.

3. Fuzzy pairwise γ -irresolute continuous mappings

Definition 3.1. Let $f:(X,\tau_1,\tau_2) \to (Y,\tau_1^*,\tau_2^*)$ be a mapping. Then f is called a fuzzy pairwise γ -irresolute $[fp\gamma$ -irresolute] continuous mapping if $f^{-1}(\nu)$ is a $(\tau_i,\tau_j)-f\gamma o$ set of X for each $(\tau_i^*,\tau_j^*)-f\gamma o$ set ν of Y.

From the above definitions it is clear that every $fp\gamma$ -irresolute continuous mapping is a $fp\gamma c$ mapping. But the converse is not true in general. A fpsc mapping and a $fp\gamma$ -irresolute continuous mapping do not have specific relations. Also, fppc mapping and $fp\gamma$ -irresolute continuous mapping are independent.

Example 3.2. Let μ_1 , μ_2 , μ_3 and μ_4 be fuzzy sets of $X = \{a, b, c\}$, defined as follows:

$$\mu_1(a) = 0.9, \mu_1(b) = 0.9, \mu_1 = 0.9,
\mu_2(a) = 0.2, \mu_2(b) = 0.2, \mu_2 = 0.2,
\mu_3(a) = 0.4, \mu_3(b) = 0.4, \mu_3 = 0.4,
\mu_4(a) = 0.7, \mu_4(b) = 0.7, \mu_4 = 0.7.$$

Consider fuzzy topologies

$$\tau_1 = \{0_X, \mu_4, 1_X\}, \tau_2 = \{0_X, \mu_3, 1_X\}, \tau_1^* = \{0_X, \mu_1, 1_X\}, \tau_2^* = \{0_X, 1_X\}.$$

Then the identity mapping $i_X:(X,\tau_1,\tau_2)\to (X,\tau_1^*,\tau_2^*)$ is $fp\gamma c$. Also, i_X are fpsc and fppc. But i_X is not $fp\gamma$ -irresolute continuous.

Example 3.3. Let μ_1 , μ_2 , μ_3 and μ_4 be fuzzy sets of $X = \{a, b, c\}$ in Example 3.2. Consider fuzzy topologies

$$\tau_1 = \{0_X, \mu_4^c, 1_X\}, \tau_2 = \{0_X, \mu_2, 1_X\}, \tau_1^* = \{0_X, \mu_4, 1_X\}, \tau_2^* = \{0_X, \mu_1, 1_X\}.$$

Then the identity mapping $i_X:(X,\tau_1,\tau_2)\to (X,\tau_1^*,\tau_2^*)$ is $fp\gamma$ -irresolute continuous. But i_X is not fppc.

Example 3.4. Let μ_1 , μ_2 , μ_3 and μ_4 be fuzzy sets of $X = \{a, b, c\}$ in Example 3.2. Consider fuzzy topologies

$$\begin{split} \tau_1 &= \{0_X, \mu_4^c, 1_X\}, \tau_2 = \{0_X, \mu_2, 1_X\}, \\ \tau_1^* &= \{0_X, \mu_1^c, 1_X\}, \tau_2^* = \{0_X, \mu_1, 1_X\}. \end{split}$$

Then the identity mapping $i_X:(X,\tau_1,\tau_2)\to (X,\tau_1^*,\tau_2^*)$ is $fp\gamma$ -irresolute continuous. But i_X is not fpsc.

Theorem 3.5. Let $f:(X,\tau_1,\tau_2)\to (Y,\tau_1^*,\tau_2^*)$ be a mapping. Then the followings are equivalent:

- (1) f is $fp\gamma$ -irresolute continuous.
- (2) The inverse image of each $(\tau_i^*, \tau_j^*) f\gamma c$ set of Y is a $(\tau_i, \tau_j) f\gamma c$ set of X.
- (3) $f((\tau_i, \tau_j) \gamma \text{Cl}\mu) \le (\tau_i^*, \tau_j^*) \gamma \text{Cl}(f(\mu))$ for each fuzzy set μ of X.
- $(4)\left(\tau_i,\tau_j\right)-\gamma\mathrm{Cl}(f^{-1}(\nu))\leq f^{-1}((\tau_i^*,\tau_j^*)-\gamma\mathrm{Cl}\nu) \text{ for each fuzzy set } \nu \text{ of } Y.$

Proof. (1) implies (2): Let ν be a $(\tau_i^*, \tau_j^*) - f\gamma c$ set of Y. Then ν^c is a $(\tau_i^*, \tau_j^*) - f\gamma o$ set. Since f is $fp\gamma$ -irresolute continuous, $f^{-1}(\nu^c) = (f^{-1}(\nu))^c$ is a $(\tau_i, \tau_j) - f\gamma o$ set of X. Hence $f^{-1}(\nu)$ is a $(\tau_i, \tau_j) - f\gamma o$ set of X.

(2) implies (1): Let ν be a $(\tau_i^*, \tau_j^*) - f\gamma o$ set of Y. Then ν^c is a $(\tau_i^*, \tau_i^*) - f\gamma c$ set and $f^{-1}(\nu^c) = (f^{-1}(\nu))^c$

is a $(\tau_i, \tau_j) - f\gamma c$ set of X. Since $f^{-1}(\nu)$ is $(\tau_i, \tau_j) - f\gamma c$ set of X, f is $fp\gamma$ -irresolute continuous.

(2) implies (3): Let μ be a fuzzy set of X. Since $f((\tau_i, \tau_j) - \gamma \operatorname{Int} \mu)$ is a $(\tau_i^*, \tau_j^*) - f \gamma c$ set of Y, $f^{-1}(f((\tau_i, \tau_j) - \gamma \operatorname{Int} \mu))$ is a $(\tau_i, \tau_j) - f \gamma c$ set of X. Hence

$$\begin{split} &(\tau_i,\tau_j) - \gamma \operatorname{Cl}\mu \\ &\leq (\tau_i,\tau_j) - \gamma \operatorname{Cl}(f^{-1}(f(\mu))) \\ &\leq (\tau_i,\tau_j) - \gamma \operatorname{Cl}(f^{-1}((\tau_i^*,\tau_j^*) - \gamma \operatorname{Cl}(f(\mu))) \\ &= f^{-1}((\tau_i^*,\tau_j^*) - \gamma \operatorname{Cl}(f(\mu))). \end{split}$$

and

$$f((\tau_i, \tau_j) - \gamma \operatorname{Cl}\mu)$$

$$\leq f(f^{-1}((\tau_i^*, \tau_j^*) - \gamma \operatorname{Cl}(f(\mu))))$$

$$\leq (\tau_i^*, \tau_j^*) - \gamma \operatorname{Cl}(f(\mu)).$$

(3) implies (4): Let ν be a fuzzy set of Y. Then

$$f((\tau_i, \tau_j) - \gamma \operatorname{Cl}(f^{-1}(\nu)))$$

$$\leq (\tau_i^*, \tau_j^*) - \gamma \operatorname{Cl}(f(f^{-1}(\nu)))$$

$$\leq (\tau_i^*, \tau_i^*) - \gamma \operatorname{Cl}\nu.$$

Thus

$$\begin{split} &(\tau_i^*, \tau_j^*) - \gamma \operatorname{Cl}(f^{-1}(\nu)) \\ &\leq f^{-1}(f((\tau_i^*, \tau_j^*) - \gamma \operatorname{Cl}(f^{-1}(\nu)))) \\ &\leq f^{-1}((\tau_i^*, \tau_j^*) - \gamma \operatorname{Cl}\nu). \end{split}$$

(4) implies (2): Let ν be a $(\tau_i^*,\tau_j^*)-f\gamma c$ set of Y. Then

$$(\tau_i, \tau_j) - \gamma \operatorname{Cl}(f^{-1}(\nu)) \le f^{-1}((\tau_i^*, \tau_j^*) - \gamma \operatorname{Cl}\nu)$$

= $f^{-1}(\nu)$.

Therefore, $f^{-1}(\nu)$ is a $(\tau_i, \tau_i) - f\gamma c$ set of X.

Theorem 3.6. A mapping $f:(X,\tau_1,\tau_2)\to (Y,\tau_1^*,\tau_2^*)$ is a $fp\gamma$ -irresolute continuous if and only if for each fuzzy set ν of Y,

$$f^{-1}((\tau_i^*,\tau_i^*)-\gamma\operatorname{Int}\nu)\leq (\tau_i,\tau_j)-\gamma\operatorname{Int}(f^{-1}(\nu)).$$

Proof. Let ν be a fuzzy set of Y. Then $(\tau_i^*, \tau_j^*) - \gamma$ Int $\nu \leq \nu$. Since f is $fp\gamma$ -irresolute continuous, $f^{-1}((\tau_i^*, \tau_j^*) - \gamma \operatorname{Int}\nu)$ is a $(\tau_i, \tau_j) - f\gamma o$ set of X. Hence

$$f^{-1}((\tau_i^*, \tau_j^*) - \gamma \operatorname{Int}\nu)$$

$$= (\tau_i, \tau_j) - \gamma \operatorname{Int}(f^{-1}((\tau_i^*, \tau_j^*) - \gamma \operatorname{Int}\nu))$$

$$\leq (\tau_i, \tau_j) - \gamma \operatorname{Int}(f^{-1}(\nu)).$$

Conversely, let ν be a $(\tau_i^*, \tau_i^*) - f\gamma o$ set of Y. Then

$$f^{-1}(\nu) = f^{-1}((\tau_i^*, \tau_j^*) - \gamma \operatorname{Int}\nu)$$

$$\leq (\tau_i, \tau_j) - \gamma \operatorname{Int}(f^{-1}(\nu)).$$

Therefore, $f^{-1}(\nu)$ is a $(\tau_i, \tau_j) - f\gamma_0$ set of X and consequently f is $fp\gamma$ -irresolute continuous.

Theorem 3.7. Let $f:(X,\tau_1,\tau_2)\to (Y,\tau_1^*,\tau_2^*)$ be a bijection. Then f is $fp\gamma$ -irresolute continuous if and only if for each fuzzy set μ of X,

$$(\tau_i^*,\tau_j^*) - \gamma \operatorname{Int}(f(\mu)) \leq f((\tau_i,\tau_j) - \gamma \operatorname{Int}\mu)).$$

Proof. Let μ be a fuzzy set of X. Then by the above theorem,

$$f^{-1}((\tau_i^*, \tau_i^*) - \gamma \operatorname{Int}(f(\mu))) \le (\tau_i, \tau_j) - \gamma \operatorname{Int}(f^{-1}(f(\mu))).$$

Since f is a bijection,

$$\begin{split} &(\tau_i^*,\tau_j^*) - \gamma \operatorname{Int}(f(\mu)) \\ &= f(f^{-1}((\tau_i^*,\tau_j^*) - \gamma \operatorname{Int}(f(\mu)))) \\ &\leq f((\tau_i,\tau_j) - \gamma \operatorname{Int}(f^{-1}(f(\mu)))) \\ &= f((\tau_i,\tau_j) - \gamma \operatorname{Int}\mu). \end{split}$$

Conversely, let ν be a $(\tau_i^*, \tau_i^*) - f\gamma o$ set of Y. Then

$$(\tau_i^*,\tau_j^*) - \gamma \operatorname{Int}(f(f^{-1}(\nu))) \leq f((\tau_i,\tau_j) - \gamma \operatorname{Int}(f^{-1}(\nu))).$$

Since f is a bijection,

$$(\tau_i^*, \tau_i^*) - \gamma \operatorname{Int}\nu \le f((\tau_i, \tau_j) - \gamma \operatorname{Int}(f^{-1}(\nu))).$$

This implies that

$$\begin{split} f^{-1}((\tau_{i}^{*},\tau_{j}^{*}) - \gamma \operatorname{Int}\nu) \\ &\leq f^{-1}(f((\tau_{i},\tau_{j}) - \gamma \operatorname{Int}(f^{-1}(\nu)))) \\ &= (\tau_{i},\tau_{j}) - \gamma \operatorname{Int}(f^{-1}(\nu)). \end{split}$$

Therefore, by the above theorem, f is $fp\gamma$ -irresolute continuous.

Theorem 3.8. Let $f:(X,\tau_1,\tau_2)\to (Y,\tau_1^*,\tau_2^*)$ be $fp\gamma$ -irresolute continuous. Then for each fuzzy set ν of Y,

$$f^{-1}((\tau_i^*, \tau_j^*) - \gamma \operatorname{Int}\nu) \le \tau_j - \operatorname{Cl}(\tau_i - \operatorname{Int}(f^{-1}(\nu))) \vee \tau_i - \operatorname{Int}(\tau_j - \operatorname{Cl}(f^{-1}(\nu))).$$

Proof. Let ν be a fuzzy set of Y. Then $(\tau_i^*, \tau_j^*) - \gamma \operatorname{Int} \nu$ is a $(\tau_i^*, \tau_j^*) - f \gamma o$ set of Y and so $f^{-1}((\tau_i^*, \tau_j^*) - \gamma \operatorname{Int} \nu)$ is a $(\tau_i, \tau_j) - f \gamma o$ set of X. Hence

$$\begin{split} f^{-1}((\tau_{i}^{*},\tau_{j}^{*})-\gamma \operatorname{Int}\nu) & \leq \\ \tau_{j}-\operatorname{Cl}(\tau_{i}-\operatorname{Int}(f^{-1}((\tau_{i}^{*},\tau_{j}^{*})-\gamma \operatorname{Int}\nu))) \vee \\ \tau_{i}-\operatorname{Int}(\tau_{j}-\operatorname{Cl}(f^{-1}((\tau_{i}^{*},\tau_{j}^{*})-\gamma \operatorname{Int}\nu))) & \leq \\ \tau_{j}-\operatorname{Cl}(\tau_{i}-\operatorname{Int}(f^{-1}(\nu))) \vee \tau_{i}-\operatorname{Int}(\tau_{j}-\operatorname{Cl}(f^{-1}(\nu))). \end{split}$$

Theorem 3.9. Let $f:(X,\tau_1,\tau_2)\to (Y,\tau_1^*,\tau_2^*)$ be $fp\gamma$ -irresolute continuous. Then for each fuzzy set ν of Y,

$$\tau_i - \operatorname{Cl}(\tau_j - \operatorname{Int}(f^{-1}(\nu))) \wedge \tau_j - \operatorname{Int}(\tau_i - \operatorname{Cl}(f^{-1}(\nu))) \\ \leq f^{-1}((\tau_i^*, \tau_i^*) - \gamma \operatorname{Cl}\nu).$$

Proof. Let ν be a fuzzy set of Y. Then $(\tau_i^*, \tau_j^*) - \gamma \operatorname{Cl}\nu$ is a $(\tau_i^*, \tau_j^*) - f\gamma c$ set of Y and so $f^{-1}((\tau_i^*, \tau_j^*) - \gamma \operatorname{Cl}\nu)$ is a $(\tau_i, \tau_j) - f\gamma c$ set of X. Hence

$$\tau_{i} - \operatorname{Cl}(\tau_{j} - \operatorname{Int}(f^{-1}(\nu))) \wedge \tau_{j} - \operatorname{Int}(\tau_{i} - \operatorname{Cl}(f^{-1}(\nu)))$$

$$\leq \tau_{i} - \operatorname{Cl}(\tau_{j} - \operatorname{Int}(f^{-1}((\tau_{i}^{*}, \tau_{j}^{*}) - \gamma \operatorname{Cl}\nu))) \wedge$$

$$\tau_{j} - \operatorname{Int}(\tau_{i} - \operatorname{Cl}(f^{-1}((\tau_{i}^{*}, \tau_{j}^{*}) - \gamma \operatorname{Cl}\nu)))$$

$$\leq f^{-1}((\tau_{i}^{*}, \tau_{i}^{*}) - \gamma \operatorname{Cl}\nu).$$

Theorem 3.10. Let $f:(X, \tau_1, \tau_2) \to (Y, \tau_1^*, \tau_2^*)$ be $fp\gamma$ -irresolute continuous. Then for each fuzzy set μ of X,

$$f(\tau_i - \operatorname{Cl}(\tau_j - \operatorname{Int}\mu) \wedge \tau_j - \operatorname{Int}(\tau_i - \operatorname{Cl}\mu))$$

$$\leq (\tau_i^*, \tau_j^*) - \gamma \operatorname{Cl}(f(\mu)).$$

Proof. Let μ be a fuzzy set of X. Then, by the above theorem,

$$\tau_{i} - \operatorname{Cl}(\tau_{j} - \operatorname{Int}\mu) \wedge \tau_{j} - \operatorname{Int}(\tau_{i} - \operatorname{Cl}\mu)$$

$$\leq \tau_{i} - \operatorname{Cl}(\tau_{j} - \operatorname{Int}(f^{-1}(f(\mu)))) \wedge$$

$$\tau_{j} - \operatorname{Int}(\tau_{i} - \operatorname{Cl}(f^{-1}(f(\mu))))$$

$$\leq f^{-1}((\tau_{i}^{*}, \tau_{i}^{*}) - \gamma \operatorname{Cl}(f(\mu))).$$

and

$$f(\tau_i - \operatorname{Cl}(\tau_j - \operatorname{Int}\mu) \wedge \tau_j - \operatorname{Int}(\tau_i - \operatorname{Cl}\mu))$$

$$\leq f(f^{-1}((\tau_i^*, \tau_j^*) - \gamma \operatorname{Cl}(f(\mu))))$$

$$\leq (\tau_i^*, \tau_i^*) - \gamma \operatorname{Cl}(f(\mu)).$$

Theorem 3.11. Let $f:(X,\tau_1,\tau_2)\to (Y,\tau_1^*,\tau_2^*)$ be $fp\gamma$ -irresolute continuous. Then for each $(\tau_i^*,\tau_j^*)-f\gamma o$ set ν of Y,

$$f^{-1}(\nu) \le (\tau_i, \tau_j) - \gamma \operatorname{Int}(f^{-1}(\tau_j^* - \operatorname{Cl}(\tau_i^* - \operatorname{Int}\nu) \vee \tau_i^* - \operatorname{Int}(\tau_j^* - \operatorname{Cl}\nu))).$$

Proof. Let ν be a $(\tau_i^*, \tau_i^*) - f\gamma o$ set of Y. Then

$$\begin{split} f^{-1}(\nu) \\ &\leq f^{-1}(\tau_j^* - \operatorname{Cl}(\tau_i^* - \operatorname{Int}\nu) \vee \tau_i^* - \operatorname{Int}(\tau_j^* - \operatorname{Cl}\nu)). \end{split}$$

Since $f^{-1}(\nu)$ is a $(\tau_i, \tau_i) - f\gamma_i$ set of X,

$$f^{-1}(\nu) = (\tau_i, \tau_j) - \gamma \operatorname{Int}(f^{-1}(\nu))$$

$$\leq (\tau_i, \tau_j) - \gamma \operatorname{Int}(f^{-1}(\tau_j^* - \operatorname{Cl}(\tau_i^* - \operatorname{Int}\nu)) \vee$$

$$\tau_i^* - \operatorname{Int}(\tau_j^* - \operatorname{Cl}\nu)).$$

References

- [1] K. K. Azad, On fuzzy semicontinuity, fuzzy almost continuity and fuzzy weakly continuity, J. Math. Anal. Appl. 82 (1981), 14–32.
- [2] I. M. Hanafy, Fuzzy γ -open sets and fuzzy γ -continuity, J. Fuzzy Math. 7 (1999), 419–430.
- [3] Y. B. Im, Fuzzy γ -open sets and γ -irresolute open mappings, Far East J. Math. Sci. **21** (2006), 259–267.
- [4] Y. B. Im, Fuzzy pairwise pre-irresolute mappings, Far East J. Math. Sci. 13 (2004), 109–118.
- [5] Y. B. Im, E. P. Lee and S. W. Park, Fuzzy γ -irresolute mappings on fuzzy topological spaces, J. Fuzzy Math. **14** (2006), 605–612.
- [6] Y. B. Im, E. P. Lee and S. W. Park, Fuzzy pairwise γ -continuous mappings J. Fuzzy Math. **10** (2002), 695–709.
- [7] S. Sampath Kumar, On fuzzy pairwise α -continuity and fuzzy pairwise pre-continuity, Fuzzy Sets and Systems **62** (1994), 231–238.
- [8] S. Sampath Kumar, Semi-open sets, semicontinuity and semi-open mappings in fuzzy bitopological spaces, Fuzzy Sets and Systems **64** (1994), 421–426.
- [9] M, K. Singal and N. Prakash, Fuzzy preopen sets and fuzzy preseparation axioms, Fuzzy Sets and Systems 44 (1991), 345–351.

Young Bin Im

Professor of Seonam University

Research Area: Fuzzy mathematics, Fuzzy topology, General topology

E-mail: philpen@naver.com