QUANTILE ESTIMATION IN SUCCESSIVE SAMPLING

  • Singh, Housila P. (School of Studies in Statistics, Vikram University) ;
  • Tailor, Ritesh (School of Studies in Statistics, Vikram University) ;
  • Singh, Sarjinder (Department of Statistics, St. Cloud State University) ;
  • Kim, Jong-Min (Statistics Discipline, Division of Science and Mathematics, University of Minnesota at Morris)
  • 발행 : 2007.12.31

초록

In successive sampling on two occasions the problem of estimating a finite population quantile has been considered. The theory developed aims at providing the optimum estimates by combining (i) three double sampling estimators viz. ratio-type, product-type and regression-type, from the matched portion of the sample and (ii) a simple quantile based on a random sample from the unmatched portion of the sample on the second occasion. The approximate variance formulae of the suggested estimators have been obtained. Optimal matching fraction is discussed. A simulation study is carried out in order to compare the three estimators and direct estimator. It is found that the performance of the regression-type estimator is the best among all the estimators discussed here.

키워드

참고문헌

  1. ALLEN, J., SINGH, H. P., SINGH, S. AND SMARANDACHE, F. (2002). 'A general class of estimators of population median using two auxiliary variables in double sampling', In Randomness and Optimal Estimation in Data Sampling (Khoshnevisan, M. et al., eds.), 26-43, American Research Press, Rehoboth
  2. BIRADAR, R. S. AND SINGH, H. P. (2001). 'Successive sampling using auxiliary information on both the occasions', Calcutta Statistical Association Bulletin, 51, 243-251 https://doi.org/10.1177/0008068320010307
  3. CHAMBERS, R. L. AND DUNSTAN, R. (1986). 'Estimating distribution functions from survey data', Biometrika, 73, 597-604 https://doi.org/10.1093/biomet/73.3.597
  4. JESSEN, R. J. (1942). 'Statistical investigation of a sample survey for obtaining farm facts', Iowa Agricultural Experiment Statistical Research Bulletin, 304, 1-104
  5. KUK, A. Y. C. (1993). 'A kernel method for estimating finite population distribution functions using auxiliary information', Biometrika, 80, 385-392 https://doi.org/10.1093/biomet/80.2.385
  6. UK, A. Y. C. AND MAK, T. K. (1989). 'Median estimation in the presence of auxiliary information', Journal of the Royal Statistical Society, Ser. B, 51, 261-269
  7. MAK, T. K. AND KUK, A. Y. C. (1993). 'A new method for estimating finite population quantiles using auxiliary information', The Canadian Journal of Statistics, 21, 29-38 https://doi.org/10.2307/3315655
  8. RAO, J. N. K., KOVAR, J. G. AND MANTEL, H. J. (1990). 'On estimating distribution functions and quantiles from survey data using auxiliary information', Biometrika, 77, 365-375 https://doi.org/10.1093/biomet/77.2.365
  9. RUEDA GARCIA, M., ARCOS CEBRIAN, A. AND ARTES RODRIGUEZ, E. (1998). 'Quantile interval estimation in finite population using a multivariate ratio estimator', Metrika, 47, 203-213 https://doi.org/10.1007/BF02742873
  10. RUEDA GARCIA M. AND ARCOS CEBRIAN, A. (2001). 'On estimating the median from survey data using multiple auxiliary information', Metrika, 54, 59-76 https://doi.org/10.1007/s001840100116
  11. SILVERMAN, B. W. (1986). Density Estimation for Statistics and Data Analysis, Chapman and Hall, London
  12. SINGH, H. P., SINGH, S. AND PUERTAS, S. M. (2003). 'Ratio type estimators for the median of finite populations', Allgemeines Statistisches Archiv, 87, 369-382
  13. SINGH, S., JOARDER, A. H., AND TRACY, D. S. (2001). 'Median estimation using double sampling', Australian and New Zealand J. Statist., 43, 33-46 https://doi.org/10.1111/1467-842X.00153
  14. SINGH, S. AND JOARDER, A. H. (2002). Estimation of the distribution function and median in two phase sampling', Pakistan Journal of Statistics, 18, 301-319
  15. SINGH, S. (2003). Advanced Sampling Theory with Applications: How Michael 'Selected' Amy, Kluwer Academic Publishers, The Netherlands