DOI QR코드

DOI QR Code

ITS에 의한 한국내 마가목 속 분류군의 유전적 계통분류학적 연구

Phylogenetic Study of Genus Sorbus in Korea by Internal Transcribed Spacer Sequence (ITS)

  • 허만규 (동의대학교 분자생물학과) ;
  • 김세현 (임업연구원 산림유전자원부) ;
  • 박소혜 (동의대학교 분자생물학과)
  • Huh, Man-Kyu (Department of Molecular Biology, Dongeui University) ;
  • Kim, Sea-Hyun (Biotechnology Division of Forest Genetics, Korea Forest Research Institute) ;
  • Park, So-Hye (Department of Molecular Biology, Dongeui University)
  • Published : 2007.12.30

Abstract

마가목 속(genus Sorbus)은 목본류로 아시아와 유럽에 분포되어 있다. 마가목 속 식물은 한국과 중국에서 약용으로 쓰인다. 한국내 마가목 속 식물에 대해 ITS에 의한 계통관계를 조사하였다 마가목 속 전체 종에서 5.8S exon은 165 핵산서열이었다. ITS1은 유럽마가목(S. aucuparia)에서 218 핵산서열인 반면 한국 내 마가목 종은 219 핵산서열이었다. ITS2 핵산서 열은 다양하였는데 S. sambucifolia var. pseudogricilisto에서 는 240 핵산서 열로 가장 적은 반면 S. aucuparia에서는 245 핵산서열이었다. ITS 전체 서열은 625개로 35개는 절약법에 정보적이었다. ITS 서 열로 한국내 분류군과 유럽종간 구분이 잘 되었다. RNA 2차 구조 추정 분석에서 도메인 I과 II는 마가목 속에 잘 보전되어 있는 반면 도메인 III에서는 많은 차이를 나타내었다. ITS 서열로 종 동정에 이용할 수 있었으며, 종의 보전이나 생식질 보전에 기초로 이용될 수 있을 것으로 사료된다.

Genus Sorbus is a long lived woody species that is primarily distributed throughout Asia and Europe. This species is regarded as very important herbal medicines in Korea and China. Sorbus commixta is primarily distributed throughout Europe. We evaluated a representative sample of the four taxa with nuclear ribosomal DNA internal transcribed spacer sequences (ITS) to estimate genetic relationships within genus. Aligned nucleotide sequences of the length of ITS1 were nearly constant within genus Sorbus varying from 219 in S. aucuparia to 218 in the rest species. Especially, the 5.8S subunit of all taxa of Sorbus was found to constant of 165 bp nucleotides. However, aligned nucleotide sequences of the length of ITS2 vary from 240 in S. sambucifolia var. pseudogrcilisto 245 in S. aucuparia. Total alignment length is 629 positions, of which 35 are parsimony-informative, 32 variable but parsimony-uninformative, and 552 constant characters. The base furtherance showed the difference to the by a total taxon: an average A and T are 17.7% and G and C are 30.4%, 34.2%, respectively. All the four taxa beginning with conserved base paired triplets emerging from single strand regions (domain I). Noteworthy, in the RNA secondary structure proposed for the three Korean Sorbus taxa RNA transcript ITS2, which shows a remarkedly well-conserved folding (domain II). When compared to the European Sorbus (S. aucuparia) of ITS2. ITS analysis may be useful in germ-plasm classification several taxa of genus Sorbus.

Keywords

References

  1. Adams, R. P., A. E. Schwarzbach and R. N. Pandey. 2003. The concordance of terpenoid, ISSR, and RAPD markers, and ITS sequences data sets among genotypes: an example from Juniperus. Biochem. System. and Ecol. 31, 375-387 https://doi.org/10.1016/S0305-1978(02)00157-6
  2. Baldwin, B. G. 1993. Molecular phylogenetics of Calcydenia (Compositae) based on ITS sequences of nuclear ribosomal DNA: Chromosomal and morphological evolution reexamined. Am. J. Bot. 80, 222-238 https://doi.org/10.2307/2445043
  3. Baldwin, B. G., M. J. Sanderson, J. M. Porter, M. F. Wojciechowski, C. S. Campbell and M. J. Donoghue. 1995. The ITS region of nuclear ribosomal DNA: a valuable source of evidence on angiosperm phylogeny. Ann. Mo. Bot. Gard. 82, 247-277 https://doi.org/10.2307/2399880
  4. Choi, M. S. 2004. Taxonomic and Ecological Study on the Genus Sorbus in Korea. pp. 97, Kangwon National Univ., Ph. D. thesis
  5. Dubouzet, J. G. and K. Shinoda. 1999. Relationships among old and New world Alliums according to ITS DNA sequence analysis. Theor. Appl. Genet. 98, 422-433 https://doi.org/10.1007/s001220051088
  6. Felsenstein, J. 1993. PHYLIP (Phylogeny Inference Package) version 3.5s, Distributed by the author. Department of Genetics, Univ. washington, seattle
  7. Hamrick, J. L., M. J. W. Godt and S. L. Sherman-Broyles. 1992. Factors influencing levels of genetic diversity in woody plant species. New Forests 6, 95-124 https://doi.org/10.1007/BF00120641
  8. Hershkovitz, M. A. and E. A. Zimmer. 1996. Conservation patterns in angiosperm rDNA ITS2 sequences. Nucleic Acid Res. 24, 2857-2867 https://doi.org/10.1093/nar/24.15.2857
  9. Hershkovitz, M. A., E. A Zimmer and W. J. Hahn. 1999. Ribosomal DNA sequences and angiosperm systematics, pp. 268-326, In Hollingsworth, P. M., R. M. Bateman and R. J. Gornall (eds.), Molecular Systematics and Plant Evolution, Taylor & Francis, London
  10. Hsiao, C., N. J. Chatterton, K. H. Asay and K. B. Jensen. 1994. Phylogenetic relationships of 10 grass species: an assessment of phylogenetic utility of the internal transcribed spacer region in nuclear ribosomal DNA in monocots. Genome 37, 112-120 https://doi.org/10.1139/g94-014
  11. Kim, S. H., M. K. Huh and J. H. Lee. 2007. Genetic relationships of among taxa of genus Sorbus based on ISSR marker analysis. KMiskininkyste 61, 69-75
  12. Na, M. K. 2000. Antioxidantive compositions from the bark of Sorbus commixta Hedlund. pp. 75, Chungnam National Univ., MS. thesis
  13. Park, S. H. S. H. Kim, H. W. Seo and M. K. Huh. 2006. Study of genetic diversity and taxonomy of genus Sorbus in Korea using random amplified polymorphic DNA. Korean J. Life Sci. 17, 470-475 https://doi.org/10.5352/JLS.2007.17.4.470
  14. Saitou, N. and M Nei. 1987. The neighbor-joining method: A new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 4, 406-425
  15. Suh, Y., L. B. Thien, H. E. Reeve and E. A. Zimmer. 1993. Molecular evolution and phylogenetic implications of ribosomal DNA in Winteraceae. Am. J. Bot. 80, 1042-1055 https://doi.org/10.2307/2445752
  16. Tamura, K., J. Dudley, M. Nei and S. Kumar. 2007. MEGA4: Molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol. Biol. Evol. 24, 1596-1599 https://doi.org/10.1093/molbev/msm092
  17. White, T. J., T. Bruns, S. Lee and J. Taylor. 1999. Amplification and direct sequencing of fungal ribosomal genes for phylogenetics, pp. 315-322, In Innis M. A., D. H. Gelfand, J. J. Sninsky and T. J. White (eds.), PCR Protocols: A Guide to Methods and Applications, New York Academic press

Cited by

  1. The Rates of Synonymous and Nonsynonymous Substitutions in Sorbus aucuparia Using Nuclear and Chloroplast Genes vol.20, pp.4, 2010, https://doi.org/10.5352/JLS.2010.20.4.481
  2. Using morphometrics to unravel species relationships and delimitations in Sorbus pohuashanensis in the Korean peninsula vol.43, pp.4, 2013, https://doi.org/10.11110/kjpt.2013.43.4.300