Abstract
In the first part of this study, the moving least squares finite difference method for solving solid mechanics problems was formulated. This second part verified the accuracy, robustness and effectiveness of the developed method through several numerical examples. It was shown that the method gives excellent convergence rate for elasticity problem. The solution process of elastic crack problems showed the easiness in discontinuity modeling and demonstrates the accuracy and efficiency in finding singular stress solution based on adaptive node distribution. The applicability to the engineering problem with abrupt change in displacement and stresses gradient fields is verified through a localization band problem. The developed method is expected to be extended to the various special engineering problems.
본 연구의 전편에서는 이동최소제곱 유한차분법을 이용한 고체역학문제의 정식화 과정이 소개되었다. 후편에서는 수치예제를 통해 이동최소제곱 유한차분법의 정확성, 강건성, 효율성을 검증했다. 탄성론 문제의 해석을 통해 개발된 해석기법의 우수한 수렴률을 확인했다. 탄성균열문제에 적용하여 간편한 불연속면 모델링이 가능하고, 적응적 절점배치를 통해 특이 응력해를 정확하고 효율적으로 계산할 수 있음을 보였다. 국소화 밴드문제 해석결과를 통해 변위나 응력이 급격하게 변화하는 특수문제에 대한 정확성과 효율성을 확인했으며, 본 해석기법이 다양한 특수 공학적 문제로 확장될 수 있을 것으로 기대된다.