Behaviour of field-responsive suspensions under oscillatory shear flow

  • Keentok, Matti (Engineering Support Group) ;
  • See, Howard (School of Chemical & Biomolecular Engineering, The University of Sydney)
  • Published : 2007.11.30

Abstract

There has been considerable interest in recent years in field-responsive suspensions, which are of some importance in industry in many different applications. The microstructure of these materials is a significant issue which can be probed by rheological measurements. In this study, measurements were made of a magnetorheological fluid (MRF) under steady and oscillatory shear flow, with and without a magnetic field. Mathematical inversion was used to derive the relaxation time spectrum of the MRF from oscillatory shear data. Experimental evidence is presented of the gel-like properties of this MRF.

Keywords

References

  1. Bombard, A., I. Joekes, M. Alcantara and M. Knobel, 2003, Magnetic susceptibility and saturation magnetization of some carbonyl iron powders used in magnetorheological fluids, Materials Science Forum 416-418, 753-758
  2. Choi, H.J., B.J. Park, M.S. Cho and J.L. You, 2007, Core-shell structured poly(methyl methacrylate) coated carbonyl iron particles and their magnetorheological characteristics, J. Magnetism and Magnetic Materials 310, 2835-2837 https://doi.org/10.1016/j.jmmm.2006.11.061
  3. Chin, B.D., J.H. Park, M.H. Kwon and O.O. Park, 2001, Rheological properties and dispersion stability of magnetorheological suspensions, Rheol. Acta 40, 211-219 https://doi.org/10.1007/s003970000150
  4. Chin, B.D. and H.H. Winter, 2002, Field-induced gelation, yield stress and fragility of an electro-rheological suspension, Rheol. Acta 41, 265-275 https://doi.org/10.1007/s00397-001-0212-0
  5. Ferry, J.D., 1980, Viscoelastic properties of polymers, Wiley, New York
  6. Flores, G.A., R. Sheng and J. Liu, 1999, Medical applications of magnetorheological fluids - A possible new cancer therapy, J Intell. Mat. Syst. Struct. 10, 708-713
  7. Ginder, J.M., 1998, Behaviour of magnetorheological fluids, MRS Bulletin, p26-29, August 1998
  8. Graessley, W.W., 1974, The entanglement concept in polymer rheology, Advances in Polymer Science 16, 1-179 https://doi.org/10.1007/BFb0031037
  9. Gras, P.W., R.S. Anderssen, M. Keentok, F. Bekes and Appels, R., 2001, Gluten protein functionality in wheat flour processing: a review, Aust. J. Agric. Res. 52, 1311-1323 https://doi.org/10.1071/AR01068
  10. Halsey, T.C., 1993, Electrorheological fluids - structure and dynamics, Adv. Mater 5, 711-718 https://doi.org/10.1002/adma.19930051004
  11. Honerkamp, J. and J. Weese, 1993, A nonlinear regularization method for the calculation of relaxation spectra, Rheol. Acta 32, 65-73 https://doi.org/10.1007/BF00396678
  12. Keentok, M., 1997, Edge fracture in rheometry, PhD thesis, Department of Mechanical Engineering, the University of Sydney
  13. Keentok, M., 2001, Instabilities and other problems in parallel plate rheometery, Proc Australian-Korean Rheology Conference, Melbourne, 20-21 September 2001
  14. Keentok, M., M.P. Newberry, P. Gras, F. Bekes and R.I. Tanner, 2002, The rheology of bread dough made from four commercial flours, Rheol. Acta 41, 173-179 https://doi.org/10.1007/s003970200016
  15. Klingenberg, D.J. and C.F. Zukoski, 1990. Studies on the steadyshear behavior of electrorheological suspensions, Langmuir 6, 15-24 https://doi.org/10.1021/la00091a003
  16. Klingenberg, D.J., 1998, Particle polarization and nonlinear effects in electrorheological suspensions, MRS Bulletin, p30, August 1998
  17. Klingenberg, D.J., 2001, Magnetorheology: Applications and challenges, AIChE J. 47, 246-249 https://doi.org/10.1002/aic.690470202
  18. Larson, R.G., 1988. Constitutive Equations for Polymer Melts and Solutions, Butterworths, Boston, p102
  19. Larson, R.G., 1999, The structure and rheology of complex fluids, Oxford University Press, New York, p345
  20. Li, W.H., H. Du, G. Chen and S.H. Yeo, 2002, Experimental investigation of creep and recovery behaviors of magnetorheological fluids, Materials Science and Engineering AStructural Materials Properties Microstructure and Processing 333, 368-376 https://doi.org/10.1016/S0921-5093(01)01865-2
  21. Liu, J., G.A. Flores and R.S. Sheng, 2001, In-vitro investigation of blood embolization in cancer treatment using magnetorheological fluids, J. Magn. Magn. Mater. 225, 209-217 https://doi.org/10.1016/S0304-8853(00)01260-9
  22. Martin, J.E., K.M. Hill and C.P. Tiges, 1999. Magnetic field induced optical transmittance in colloidal suspensions, Phys. Rev. E 59, 5676-5692 https://doi.org/10.1103/PhysRevE.59.5676
  23. Mead, D.W., 1994, Determination of molecular weight distribution of linear flexible polymers from linear viscoelastic material functions, Journal of Rheology 38, 1797-1827 https://doi.org/10.1122/1.550527
  24. Melle, S., O.G. Calderon, M.A. Rubio and G.G. Fuller, 2002, Rotational dynamics in dipolar colloidal suspensions: video microscopy experiments and simulations results, J. Non-Newtonian Fluid Mech 102, 135-148 https://doi.org/10.1016/S0377-0257(01)00174-4
  25. Mours, M. and H.H. Winter, 1998, Relaxation patterns of endlinking polydimethylsiloxane near the gel point, Polymer Bulletin 40, 267-274 https://doi.org/10.1007/s002890050251
  26. Pan, X. and G.H. McKinley, 1997, Structural limitations to the material strength of electrorheological fluids, Appl. Physics Lett. 71, 333-335 https://doi.org/10.1063/1.119530
  27. Park, J.H., B.D. Chin and O.O. Park, 2001. Rheological properties and stabilization of magnetorheological fluids in a waterin- oil emulsion, J. Colloid Interface Sci. 240, 349-354 https://doi.org/10.1006/jcis.2001.7622
  28. Park, J.H. and O.O. Park, 2001, Electrorheology and magnetorheology, Korea-Australia Rheology Journal 13, 13-17
  29. Parthasarathy, M. and D.J. Klingenberg, 1996, Electrorheology: mechanisms and models, Materials Science and Engineering R17, 57-103
  30. Phan-Thien, N. and M. Safari-Ardi, 1998, Linear viscoelastic properties of flour-water doughs at different water concentrations, J. Non-Newtonian Fluid Mech 74, 137-150 https://doi.org/10.1016/S0377-0257(97)00071-2
  31. Rankin, P.J., J.M. Ginder and D.J. Klingenberg, 1998, Electro and magnetorheology, Curr. Opin. Colloid Interface Sci. 3, 373-381 https://doi.org/10.1016/S1359-0294(98)80052-6
  32. Rankin, P.J., A.T. Horvath and D.J. Klingenberg, 1999, Magnetorheology in viscoplastic media, Rheol. Acta 38, 471-477 https://doi.org/10.1007/s003970050198
  33. Satoh, A. and S. Kamiyama, 1995. On aggregation phenomena in magnetic fields, J. Colloid Interface Sci. 172, 37-47 https://doi.org/10.1006/jcis.1995.1222
  34. See, H.T., 1999, Advances in modelling the mechanisms and rheology of electrorheological fluids, Korea-Australia Rheology Journal 11, 169-195
  35. See, H., 2001, Mechanisms of magneto- and electro-rheology: recent progress and unresolved issues, Applied Rheology 11, 70-82
  36. See, H. and R. Tanner, 2003, Shear rate dependence of the normal force of a magnetorheological suspension, Rheol. Acta 42, 166-170 https://doi.org/10.1007/s00397-002-0268-5
  37. Sim, H.G., K.H. Ahn and S.J. Lee, 2003, Three dimensional dynamics simulation of electrorheological fluids under large amplitude oscillatory shear flow, J. Rheol. 47, 879-895 https://doi.org/10.1122/1.1582854
  38. Tao, R., 2001, Super-strong magnetorheological fluids, J. Phys-Condens Matter 13, R979-R999 https://doi.org/10.1088/0953-8984/13/50/202
  39. Thimm, W., C. Friedrich, M. Marth and J. Honerkamp, 2000, Determination of the molecular weight distribution from the relaxation time spectrum, Proc. XIIIth International Congress on Rheology, Cambridge UK, 20-25 August 2000
  40. Vekas, L., M. Rasa and D. Bica, 2000, Physical properties of magnetic fluids and nanoparticles from magnetic and magnetorheological measurements, J. Colloid Interface Sci. 231, 247- 254 https://doi.org/10.1006/jcis.2000.7123
  41. Weese, J. and C. Friedrich, 1994),Relaxation time spectra in rheology: Calculation and examples, Rheology 4, 69-76