물리적 다중 보안 등급 네트워크 설계를 위한 GOSST 휴리스틱 메커니즘

A GOSST Heuristic Mechanism for the Design of a Physical Multiple Security Grade Network

  • 발행 : 2007.12.31

초록

본 논문에서는 최소 구축비용의 물리적 다중 보안 등급 네트워크 설계를 위한 GOSST 휴리스틱 메커니즘을 제안한다. 다중 보안 등급 네트워크상에서 각 노드는 원하는 보안 등급으로 다른 노드와 통신할 수 있다. 이를 위해서는 불법적인 물리적 접근을 통제할 수 있는 방법이 필요하다. 이러한 네트워크를 최소비용으로 구축하기 위해 GOSST 문제를 적용한다. 이 문제는 NP-Hard 영역이므로 현실적인 해를 얻기 위해서는 적절한 복잡도의 휴리스틱이 필요하다. 본 연구에서는 최소 구축비용의 물리적 다중 보안 등급 네트워크의 설계를 위해, 우리의 이전 거리 직접 GOSST 휴리스틱을 변형한 GOSST 휴리스틱 메커니즘을 제안한다. 이것은 실험 비교 대상인 G-MST에 대하여 평균 29.5%의 구축비용 절감을 보였다.

In this paper, we propose a GOSST(Grade Of Services Steiner minimum Tree) heuristic mechanism for the design of a physical multiple security grade network with minimum construction cost. On the network, each node can communicate with other nodes by its desiring security grade. Added to the existing network security methods, the preventing method from illegal physical access is necessary for more safe communication. To construct such network with minimum cost, the GOSST problem is applied. As the GOSST problem is a NP-Hard problem, a heuristic with reasonable complexity is necessary for a practical solution. In this research, to design the physical multiple security grade network with the minimum construction cost, the reformed our previous Distance Direct GOSST heuristic mechanism is proposed. The mechanism brings average 29.5% reduction in network construction cost in comparison with the experimental control G-MST.

키워드

참고문헌

  1. S. Arora, 'Polynomial-Time Approximation Schemes for Euclidean TSP and other Geometric Problems,' Proceeding of 37th IEEE Symposium on Foundations of Computer Science, pp.2-12, 1996
  2. A. Balakrishnan, T.L. Nagnanti and P. Mirchandani, 'Modeling and Heuristic Worst Case Performance Analysis of the two grade Network Design Problem,' Management Science ,Vol.40, pp.846-867, 1994 https://doi.org/10.1287/mnsc.40.7.846
  3. T.H. Cormen, C.E Leiserson, R.L. Rivest and C.Stein, Introduction to Algorithms, 2nd Ed., MIT press, 2001
  4. C. Duin and A. Volgenant, 'The Multi-weighted Steiner Tree problem,' Annals of Operations Research, Vol.33, pp.451-469, 1991 https://doi.org/10.1007/BF02071982
  5. D.Z. Du and F.K. Hwang, 'An approach for providing lower bounds; solution of Gilbert-Pollak conjecture on Steiner ratio,' Proceedings of IEEE 31sy FOCS, pp.76-85, 1990
  6. E.J. Cockayne and D.E. Hewgrill, 'Improved computation of plane Steiner minimal tree,' Algorithmica, Vol.7, pp.219-229, 1992 https://doi.org/10.1007/BF01758759
  7. F.K. Hwang, D.S. Richards and P. Winter, The Steiner Tree Problem, Annals of Discrete Mathematics, Vol.53, North-Holland, 1992
  8. G.H. Lin and G.L. Xue , 'Steiner tree problem with minimum number of Steiner points and bounded edge-length,' Information Processing Letters, pp.53-57, 1999
  9. I. Kim, C. Kim and S.H. Hosseini, 'A Heuristic using GOSST with 2 Connecting Strategies for Minimum Construction Cost of Network,' International Journal of Computer Science and Network Security, Vol.6, No.12, pp.60-72, 2006
  10. I. Kim and C. Kim, 'An Enhanced Heuristic Using Direct Steiner Point Locating and Distance Preferring MST Building Strategy for GOSST Problem,' International Journal of Computer Science and Network Security, Vol.7, No.2, pp.164-175, 2007
  11. J. Kim and I. Kim, 'Approximation ratio 2 for the Minimum Number of Steiner Points,' Journal of KISS, pp.387-396, 2003
  12. J. Kim, M. Cardei, I. Cardei and X. Jia, 'A polynomial Time Approximation Scheme for the Grade of Service Steiner Minimum Tree Problem,' Journal of Global Optimization, pp.437-448, 2002
  13. G. Xue, G.H. Lin and D.Z. Du, 'Grade of Service Steiner Minimum Trees in Euclidean Plane,' Algorithmica, Vol.31, pp.479-500, 2001 https://doi.org/10.1007/s00453-001-0050-6
  14. C.J. Colbourn and G. Zue, 'Grade of Service Steiner Trees in Serial-Parallel Networks,' Advances in Steiner Trees, pp.1-10, 1998