Dynamic Control of Timer for Receiving Beacon in Low Power Wireless Interface

저전력 무선접속에서 비콘 수신을 위한 타이머의 동적 제어

  • 송명렬 (호서대학교 정보통신공학과)
  • Published : 2007.12.31

Abstract

In IEEE 802.11b wireless network, stations synchronize themselves to the beacons periodically sent by the access point (AP) when they are running in low power mode. Stations stay awake for enough time to receive beacon because it is delayed in AP if the wireless channel has been being used by other traffic at each scheduled instant. In this paper, we propose a method that measures the delay of received beacons and calculates wake-up interval of station to receive the next one. Beacon transmission delay at the AP is analyzed. The proposed method is simulated and its characteristics are described in the analysis. The result measured in terms of station's wake-up interval shows some enhancement in energy consumption.

IEEE 802.11b 무선 네트워크에서 스테이션들이 저전력 모드로 동작할 때, 스테이션들은 액세스 포인트 (AP)가 주기적으로 전송하는 비콘(beacon)을 수신하여 동기를 맞춘다. 예정된 시각에 무선채널이 사용 중인 경우 AP에서 비콘 전송이 지연되므로, 스테이션은 비콘을 수신하기 위해 충분한 시간 동안 깨어있어야 한다. 이 논문에서는 수신된 비콘의 지연시간을 측정하여 다음 비콘을 수신하기 위해 스테이션이 깨어있어야 할 시간을 결정하는 방법을 제안한다. AP에서 비콘의 전송지연에 대해 분석하였다. 제안된 방법에 대해 모의실험이 수행되었고 분석을 통해 제안된 방법의 특성을 설명하였다. 스테이션이 깨어있는 시간으로 측정된 결과는 에너지 소모가 개선될 수 있음을 보여준다.

Keywords

References

  1. A. Acquaviva, T. Simunic, and V. Deolalikar, 'Server controlled power management for wireless portable devices', Hewlett Packard Laboratories Technical Report, HPL-2003-82, 2003
  2. P. Chatzimisios, V. Vitsas and A. C. Boucouvalas, 'Throughput and delay analysis of IEEE 802.11 protocol', Proc. 5th IEEE Workshop Networked Appliances, pp.168-174, Oct. 2002
  3. LAN MAN Standards Committee of the IEEE Computer Society, Wireless LAN medium access control (MAC) and physical layer (PHY) specifications, ANSI/IEEE Std 802.11, 1999 Edition, 1999
  4. R. Jejurikar and R. Gupta, 'Energy aware task scheduling with task synchronization for embedded real time systems', Proc. of the International Conference on Compilers, Architectures and Synthesis for Embedded Systems, pp.164-169, Oct. 2002
  5. R. Kravets and P. Krishnan, 'Application-driven power management for mobile communication', Wireless Networks, vol. 6, Issue 4, pp.263-277, Jul. 2000 https://doi.org/10.1023/A:1019149900672
  6. Y. H. Lu, L. Benini and G. D. Micheli, 'Power-aware operating systems for interactive systems', IEEE Trans. on Very Large Scale Integration (VLSI) Systems, vol. 10, no. 2, pp.119-134, Apr. 2002 https://doi.org/10.1109/92.994989
  7. S. Mangold, S. Choi, P. May, o. Klein, G. Hiertz, and L. Stibor, 'IEEE 802.11e wireless LAN for quality of service', Proc. European Wireless, Florence, Italy, pp.32-39, Feb. 2002
  8. S. M. Martin, K. Flautner, T. Mudge, and D. Blaauw, 'Combined dynamic voltage scaling and adaptive body biasing for lower power microprocessors under dynamic workloads', Proc. of International Conference on Computer Aided Design (ICCAD-2002), pp.721-725, Nov. 2002
  9. S. Mohapatra, R. Cornea, N. Dutt, A. Nicolau, and N. Venkatasubramanian, 'Integrated power management for video streaming to mobile hand-held devices', Proc. of the 11th ACM International Conference on Multimedia, pp.582-591, Nov. 2003
  10. T. Simunic, L. Benini, G. D. Micheli, 'Energy-efficient design of battery-powered embedded systems', IEEE Trans. on Very Large Scale Integration (VLSI) Systems, vol. 9, no. 1, pp.15-28, Feb. 2001 https://doi.org/10.1109/92.920814
  11. S. Vasudevan, K. Papagiannaki, C. Diot, J. Kurose and D. Towsley, 'Facilitating access point selection in IEEE 802.11 wireless networks', In ACM Sigcomm Internet Measurement Conference, Berkeley, Oct. 2005