DOI QR코드

DOI QR Code

Histochemical and Physiological Characteristics during Korean Native Ogol Chicken Development

성장 단계에 따른 한국 재래 오골계 근육의 조직학 및 생리학적 특성

  • Nam, Yun-Ju (Division of Food Bioscience and Technology, College of Life Sciences and Biotechnology, Korea University) ;
  • Kim, Dong-Uk (Division of Food Bioscience and Technology, College of Life Sciences and Biotechnology, Korea University) ;
  • Choi, Young-Min (Division of Food Bioscience and Technology, College of Life Sciences and Biotechnology, Korea University) ;
  • Ryu, Youn-Chul (Division of Food Bioscience and Technology, College of Life Sciences and Biotechnology, Korea University) ;
  • Lee, Sang-Hoon (Division of Food Bioscience and Technology, College of Life Sciences and Biotechnology, Korea University) ;
  • Kim, Byoung-Chul (Division of Food Bioscience and Technology, College of Life Sciences and Biotechnology, Korea University)
  • 남윤주 (고려대학교 생명과학대학 식품공학부) ;
  • 김동욱 (고려대학교 생명과학대학 식품공학부) ;
  • 최영민 (고려대학교 생명과학대학 식품공학부) ;
  • 류연철 (고려대학교 생명과학대학 식품공학부) ;
  • 이상훈 (고려대학교 생명과학대학 식품공학부) ;
  • 김병철 (고려대학교 생명과학대학 식품공학부)
  • Published : 2007.12.30

Abstract

This study examined the histochemical and physiological characteristics during Korean native Ogol chickens (KNOC) development. The body weight, Pectoralis major and soleus muscle weights, and muscle samples were taken at hatching as well as at 3, 5, and 15 weeks of age. The fiber characteristics of the Pectoralis major and soleus muscles from the KNOC at hatching to 15 weeks of age were determined, and the deoxyribonucleic acid (DNA), ribonucleic acid (RNA), and protein concentrations were measured from the left Pectoralis major muscles. A greater increase in body and muscle weights was detected between hatching and 3 weeks of age than during any other period. Moreover, the cross sectional area (CSA) of the fibers, as well as the total concentration of DNA, RNA, and protein also showed a greater increase betweenhatching and 3 weeks of age than during any other period. The KNOC breed is a dual purpose breed, however, the it has lower body and muscle weights than commercial meat type chickens or layer type chickens. Moreover, the KNOC breed has a small muscle fiber CSA of and a low nucleic acid concentration.

본 연구는 한국 재래 오골계의 성장에 따른 조직학적 및 생리학적 특성을 분석하기 위해 수행하였다. 계군들의 체중, 흉근과 가자미근의 무게 측정 및 시료의 채취는 부화 직후 및 3, 5, 15주령에 이루어졌다. 근섬유 특성은 부화 직후에서 15주령까지의 오골계 흉근과 가자미근을 이용하여 분석하였고, DNA, RNA 및 단백질 함량은 왼쪽 흉근에서 측정하였다. 체중의 상대적인 증가율은 부화 직후에서 3주령까지의 기간에 가장 크게 나타났다. 가슴의 무게는 부화 직후에서 3주령까지의 기간에 약 24.46배가 증가했으며, 가슴 중 흉근도 동일한 기간 동안 약 31.14배 증가하였다. 소퇴부 및 가자미근의 무게 역시 부화 직후에서 3주령까지의 시기에 뚜렷한 증가가 나타났다. 모든 근섬유의 단면적은 성장 기간 동안 증가하는데, 15주의 실험 기간 동안 흉근의 근섬유 단면적은 65배 증가($34.06\;{\pm}\;3.08$에서 $2238\;{\pm}\;177\;{\mu}m^2$)하였다. 흉근의 근섬유 단면적은 부화 직후에서 3주령까지의 기간에는 약 18배, 3주령에서 5주령까지의 기간 동안에는 약 1.6배 증가를 보였다. 따라서 흉근의 근섬유 단면적과 무게 역시 3주령 때까지 가장 큰 증가를 보임을 알 수 있다. 핵산 및 단백질의 함량을 분석한 실험에서도 부화 직후에서 3주령 사이에 가장 큰 증가가 나타났는데, 부화부터 3주령까지의 기간 동안 각각 DNA 총량은 13배, RNA 총량은 21배, 단백질 총량은 30배 증가한 것으로 나타났다.

Keywords

References

  1. Alway, S. E., Gonyea, W. J., and Davis, M. E. (1990) Muscle fiver formation and fiber hypertrophy during the onset of stretch-overload. Am. J. Physiol. 259, 92-102 https://doi.org/10.1152/ajpcell.1990.259.1.C92
  2. Barton-Gade, P. (1981) The measurement of meat quality in pigs post mortem. In Porcine Stress and Meat Quality Causes and Possible Solutions to the Problems. Agricultural Food Research Society. As, Norway. pp. 359
  3. Bechtel, P. J. (1986) Muscle development and contractile proteins. In Muscle as Food. Academic Press. Orlando, Fla. USA pp. 2-35
  4. Brooke, M. H. and Kaiser, K. K. (1970) Three myosin adenosine triphosphatase systems: the nature of their pH liability and sulphydryl dependence. J. Histochem. Cytochem. 18, 670-672 https://doi.org/10.1177/18.9.670
  5. Bulow, F. J. (1987) The age and growth of fish. The Iwoa State University Press. Ames, Iwoa, USA pp. 45-64
  6. Burton, K. (1956) A study of the conditions and mechanism of the diphenylamine reaction for the colorimetric estimation of deoxyribonucleic acid. Biochem. J. 62, 315-323 https://doi.org/10.1042/bj0620315
  7. Choi, Y. M., Ryu, Y. C. and Kim, B. C. (2007) Influence of myosin heavy- and light chain isoforms on early postmortem glycolytic rate and pork quality. Meat Sci. 76, 281-288 https://doi.org/10.1016/j.meatsci.2006.11.009
  8. Cooper, C. C., Cassens, R. G., Kastenschmidt, L. L., and Briskey, E. J. (1970) Histochemical characterisation of muscle differentiation. Dev. Biol. 23, 169-184 https://doi.org/10.1016/0012-1606(70)90093-X
  9. Essen-Gustavsson, B., Karlsson, A., Lundstrom, K., and Enfalt, A. C. (1994) Intramuscular fat and muscle fiber lipid contents in halothane-gene-free pigs fed high or low protein diets and its relation to meat quality. Meat Sci. 38, 269-277 https://doi.org/10.1016/0309-1740(94)90116-3
  10. Guemec, A, Berri, C., Chevalier, B., Wacrenier-Cere, N., Le Bihan-Duval, E., and Duclos, M. J. (2003) Muscle development, insulin-like growth factor-I and myostatin mRNA levels in chickens selected for increased breast muscle yield. Growth Horm. IGF Res. 13, 8-18 https://doi.org/10.1016/S1096-6374(02)00136-3
  11. Hoving-Bolink, A. H., Kranen, R. W., Klont, R. E., Gerritsen, C. L. M., and de Greef, K. H. (2000) Fiber area and capillary supply in broiler breast muscle in relation to productivity and ascites. Meat Sci. 56, 397-402 https://doi.org/10.1016/S0309-1740(00)00071-1
  12. Jones, S. J., Aberle, E. D., and Judge, M. D. (1986) Skeletal muscle protein turnover in broiler and layer chicks. J. Anim. Sci. 62, 1576-1583 https://doi.org/10.2527/jas1986.6261576x
  13. Kang, C. W., Sunde, M. L., and Swick, R. W. (1985) Growth and protein turnover in the skeletal muscles of broiler chicks. Poult. Sci. 64, 370-379 https://doi.org/10.3382/ps.0640370
  14. Karlsson, A. H., Klont, R. H., and Fernandez, X. (1999) Skeletal muscle fibres as factors for pork quality. Livest. Prod. Sci. 60, 255-269 https://doi.org/10.1016/S0301-6226(99)00098-6
  15. Kiessling, K. H. and Hansson, I. (1983) Fiber composition and enzyme activities in pig muscles. Swedish J. Agric. Res. 13, 257-261
  16. Larzul, C., Lefaucheur, L., Ecolan, P., Gogue, J., Talmant, A., Sellier, P., Le Roy, P., and Monin, G. (1997) Phenotypic and genetic parameters for longissimus muscle fiber characteristics in relation to growth, carcass and meat quality traits in Large White pigs. J. Anim. Sci. 75, 3126-3137
  17. Lin, R. I. and Schjeide, O. A. (1969) Micro estimation of RNA by the cupric ion catalyzed orcinol reaction. Anal. Biochem. 27, 473-483 https://doi.org/10.1016/0003-2697(69)90061-X
  18. Lowry, O. H., Rosebrough, N. J., Farr, A. L., and Randall, R. J. (1951) Protein measurement with the folin phenol reagent. J. Biol. Chem. 193, 265-275
  19. Mizuno, T. and Hikami, Y. (1971) Comparison of muscle growth between meat-type and egg-type chickens. Jpn. J. Zootech. Sci. 42, 526-532
  20. Moody, W. G. and Cassens, R. G. (1968) Histochemical differentiation of red and white muscle fibers. J. Anim. Sci. 27, 961-968 https://doi.org/10.2527/jas1968.274961x
  21. Ono, Y., Iwamoto, H., and Takahara, H. (1993) The relationship between muscle growth and the growth of different fiber types in the chickens. Poult. Sci. 72, 568-576 https://doi.org/10.3382/ps.0720568
  22. Park, B. S. and Rhee, Y. C. (1995) Changes in muscle nucleeic acids and protein turnover during the animal growth. Korean J. Food Sci. Ani. Resour. 15, 178-186
  23. Rehfeldt, C., Fiedler, I., Dietl, G., and Ender, K. (2000) Myogenesis and postnatal skeletal muscle cell growth as influenced by selection. Livest. Prod. Sci. 66, 177-188 https://doi.org/10.1016/S0301-6226(00)00225-6
  24. Ryu, Y. C. and Kim, B. C. (2004) Estimation of correlation coefficients between histological parameters and carcass traits of pig longissimus dorsi muscle. Asian-Australs. J. Anim. Sci. 17, 428-433 https://doi.org/10.5713/ajas.2004.428
  25. Ryu, Y. C. and Kim, B. C. (2005) The relationships of muscle fiber characteristics to postmortem metabolic rate and meat quality traits in pig longissimus muscle. Meat Sci. 71, 351-357 https://doi.org/10.1016/j.meatsci.2005.04.015
  26. Ryu, Y. C., Rhee, M. S., Lee, K. M., and Kim, B. C. (2005) Effects of different levels of dietary supplemental selenium on performance, lipid oxidation, and color stability of broiler chicks. Poult. Sci. 84, 809-815 https://doi.org/10.1093/ps/84.5.809
  27. SAS (2001) SAS/STAT User's Guide, Version 8.2th eds. SAS Institute Inc., Cary, NC, USA
  28. Schiaffino, S. and Reggiani, C. (1996) Molecular diversity of myofibrillar proteins, Gene regulation and functional significance. Physiol. Rev. 76, 371-423 https://doi.org/10.1152/physrev.1996.76.2.371
  29. Talmadge, R. J., Roy, R. R, and Edgerton, V. R. (1995) Prominence of myosin heavy chain hybrid fibers in soleus muscle of spinal cord transected rats. J. Appl. Physiol. 78, 1256-1265 https://doi.org/10.1152/jappl.1995.78.4.1256
  30. Williams, P. and Goldspink, G. (1978) Changes in sarcomere length and physiological properties in immobilixed muscle. J. Anat. 127, 459-468
  31. Yun, J. S., Seo, D. S., Kim, W. K., and Ko, Y. (2005) Expression and relationship of the insulin-like growth factor system with posthatch growth in the Korean Native Ogol Chicken. Poult. Sci. 84, 83-90 https://doi.org/10.1093/ps/84.1.83