DOI QR코드

DOI QR Code

Functional Modification of Sanitary Nonwoven Fabrics by Chitosan Treatment (Part II) -Focused on Changes in Physical Properties-

키토산 처리에 의한 위생용 부직포의 기능성 개질화 (제2보) -물성 변화를 중심으로-

  • Bae, Hyun-Sook (Dept. of Clothing & Textiles, Changwon National University) ;
  • Kang, In-Sook (Dept. of Clothing & Textiles, Changwon National University) ;
  • Park, Hye-Won (Dept. of Clothing & Textiles, Changwon National University) ;
  • Ryou, Eun-Jeong (Dept. of Clothing & Textiles, Changwon National University) ;
  • Kwon, Jay-Cheol (Dept. of Neurology, Changwon Fatima Hospital)
  • Published : 2007.12.31

Abstract

The change in physical properties of polypropylene nonwoven fabrics used as top sheet for disposable sanitary goods was carried out using chitosan that is a type of natural polymer and has excellent human affinity by varying the molecular weight and concentration of chitosan. Low molecular weight(LMW) chitosan treated fabrics were found to be evenly coated on fabrics and had better dyeability by apparent dye uptake and its deodorization rate increased over the time. On the other hand, high molecular weight(HMW) chitosan treated fabrics showed higher add-on ratio and its dynamic water absorption rate and represented an increase in water transport rate. With chitosan treatment, its air permeability was improved. Regardless of the type of bacteria and chitosan concentration, its antibacterial activity was excellent in the case of the HMW chitosan treatment. In this regard, chitosan treatments by using a relatively high molecular weight was found as an effective way in the functional improvement of moisture properties and antibacterial activity including their most important performance in sanitary nonwoven fabrics.

일회용 위생용품의 탑시트로 사용되는 폴리프로필렌 부직포에 천연고분자이며, 인체친화력이 우수한 키토산을 분자량과 농도를 변화시켜 처리하므로써 기능성 개질화된 부직포의 항균성을 비교하고, 소취성과 공기투과도 및 흡습성, 흡수량 등의 수분 특성을 살펴보았다. 키토산의 처리농도가 증가하고, 고분자량일수록 부착률이 컸으며, 저분자량 키토산 처리포의 경우 겉보기 염착량에 의한 염색성이 더 좋게 나타났다. 수분 특성의 경우, 고분자량의 키토산 처리시 동적흡수율과 흡수량이 더 증가하였다. 키토산 처리로 공기투과도는 모두 향상되었으며, 키토산 처리농도가 증가하고 시간이 경과함에 따라 소취율이 증가하였고, 저분자량의 키토산 처리시 소취효과가 더 우수하였다. 박테리아 균주의 종류와 키토산의 농도에 상관없이 고분자량의 키토산 처리시 항균성이 아주 우수하여 위생용 부직포의 성능 중 가장 중요한 항균성과 수분 특성의 기능성 향상을 위해서는 비교적 분자량이 큰 키토산이 효과적이었다.

Keywords

References

  1. Backer, S. (1948). The relationship between the structnral geometry of a textile fabric and its physical properties (Thermal Resistance). Textile Res. J., 18, 650-658 https://doi.org/10.1177/004051754801801102
  2. Boiko, S. (1999). Treatment of diaper dermatitis. Dennatol Clin., 17, 235-240 https://doi.org/10.1016/S0733-8635(05)70079-6
  3. Jo, J. S., Kim, S. R., & Choi, J. H. (1999). A study for the development of disposable diapers for the elderly in need. J. Korean Home Economics Association, 37(7), 29-43
  4. Katsumasa, T. & Takao, H. (1994). Preparation and antibacterial activities of N-trimethylammonium salts of chitosan. Sen-I Kagaku, 50(5), 215-220
  5. Kim, J. J., Jeon, D. W., & Kwon, Y. K. (1997). A study on the change of hand of chitosan-treated fabrics (III): -Effect of chitosan treatment conditions-. J. Korean Fiber Soc., 34(10), 689-700
  6. Koyano, T., Koshizaki, N., Umehara, H. Nagura, M., & Minonra, N. (2000). Surface states of PVA/Chitosan blended hydrogels. Polymer, 41, 4461-4465 https://doi.org/10.1016/S0032-3861(99)00675-8
  7. Mahomed, R. S. (1971). Antibacterial and antifungal finishes. In Mark, H., Wooding, N. S., & Atlas, S. M. (Eds.), Chemical aftertreatment of textiles (pp. 507-512). New York: John Wiley & Sons
  8. Oh, K. W., Hong, K. H., & Kang, T. J. (2004). A study of surface properties and handle of nonwovens for disposable diaper. J. Korean Soc. Clothing and Textiles, 28(3/4),491-498
  9. Qu, X., Wirsen, A., & Albertson, A. C. (1999). Synthesis and characterization of pH-sensitive hydrogels based on chitosan and D, L-Lactic acid. J. Appl. Polym. Sci., 74, 3193-3202 https://doi.org/10.1002/(SICI)1097-4628(19991220)74:13<3193::AID-APP23>3.0.CO;2-V
  10. Seo, H., Mitsuhashi, K., & Tanibe, H. (1992). Advances in chitin and chitosan. In Brine, C. J., Sandford, P. A., & Zikakis, J. P. (Eds.). London and New York: Elsevier Applied Science
  11. Shin, Y. S. & Min, K. H. (1997). ChitiniChitosan: Antimicrobial properties and applications. Polymer Science and Technology, 8(5), 591-595
  12. Shin, Y. S. & Min, K. H. (1998). Antimicrobial finish of nonwoven fabric by treatment with chitosan. J. Korean Soc. Dyers and Finishers, 10(3), 50-56
  13. Uchida, Y., Izume, M., & Ohtakara, A. (1992). Advances in chitin and chitosan. In Skjak-Braek, G. (Eds.). London and New York: Elsevier Applied Science
  14. Vigo, T. L. & Benjaminson, M. A. (1981). Antibacterial fiber treatments and disinfection. Textile Res. J., 51(7), 454-465 https://doi.org/10.1177/004051758105100704
  15. Watt, I. C., Kenett, K. R., & James, J. F. P. (1959). The Dry weight of wool. Textile Res. J., 29, 975-981 https://doi.org/10.1177/004051755902901207
  16. Yang, J. M., Lin, H. T., Wu, T. H., & Chen, C. C. (2003). Wettability and antibacterial assessment of chitosan containing radiation-induced graft nonwoven fabric of polypropylene-g-acrylic acid. J. Applied Polymer Science, 90, 1331-1336 https://doi.org/10.1002/app.12787

Cited by

  1. Functional modification of sanitary nonwoven fabric by chitosan/nanosilver colloid solution and evaluation of applicability vol.11, pp.4, 2010, https://doi.org/10.1007/s12221-010-0607-6