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Abstract

Here we demonstrate complex transient behavior of viscoelastic liquid described numerically with the
Leonov model in straight and contraction channel flow domains. Finite element and implicit Euler time inte-
gration methods are employed for spatial discretization and time marching. In order to stabilize the com-
putational procedure, the tensor-logarithmic formulation of the constitutive equation with SUPG and
DEVSS algorithms is implemented. For completeness of numerical formulation, the so called traction
boundaries are assigned for flow inlet and outlet boundaries. At the inlet, finite traction force in the flow
direction with stress free condition is allocated whereas the traction free boundary is assigned at the outlet.
The numerical result has illustrated severe forward-backward fluctuations of overall flow rate in inertial
straight channel flow ultimately followed by steady state of forward flow. When the flow reversal occurs,
the flow patterns exhibit quite complicated time variation of streamlines. In the inertialess flow, it takes
much more time to reach the steady state in the contraction flow than in the straight pipe flow. Even in the
inertialess case during startup contraction flow, quite distinctly altering flow patterns with the lapse of time
have been observed such as appearing and vanishing of lip vortices, coexistence of multiple vortices at the

contraction comer and their merging into one.
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1. Introduction

Viscoelastic liquids demonstrate various flow behaviors
distinct from the Newtonian fluid, most of which result
from nonlinear characteristics as well as elasticity of the
liquids such as shear thinning and extensional hardening.

Peculiar non-Newtonian flow behavior occurs almost
always at high Deborah number or at high flow rate where
nonlinear effects dominate. Thus in order to analyze it, one
has to perform successful numerical modeling of this high
Deborah number flow, which has been a formidable task in
the field of computational viscoelastic fluid dynamics. Its
difficulty may be expressed via lack of proper mesh con-
vergence, solution inaccuracy and violation of positive def-
initeness of the conformation tensor (violation of strong
ellipticity of partial differential equations), which ulti-
mately result in degradation of the whole numerical
scheme. Here again we employ in the finite element for-
mulation the tensor-logarithmic transform, which has been
first suggested by Fattal and Kupferman (2004) and has
also been applied in our previous works (Kwon, 2004;
Yoon and Kwon, 2005). It forbids the violation of positive
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definiteness of the conformation tensor and therefore erad-
icates one fatal pathological behavior of governing equa-
fions.

The first finite element implementation of this new for-
malism has been performed by Hulsen (2004) and Hulsen
and coworkers (2005), who have demonstrated dramatic
stabilization of the numerical procedure with the Giesekus
constitutive equation. Kwon (2004) and Yoon and Kwon
(2005) have given numerical results of the flow modeling
in the domain with sharp corners. In comparison with the
conventional method, stable computation has been dem-
onstrated even in this flow domain with sharp corners. In
the papers, it has been concluded that this new method may
work only for constitutive equations proven globally sta-
ble.

The time-dependent viscoelastic flow modeling has been
performed mainly by implementing hybrid finite element/
finite volume method. Sato and Richardson (1994) have
observed heavy oscillations of the centerline velocity in the
inertial straight channel flow of the upper convected Max-
well liquid when the traction boundary condition is
assigned at the inlet and outlet boundaries. The numerical
results obtained by Webster and coworkers (2004) illustrate
quite distinct time variation of transient streamlines as well
as fluctuations of rheological variables in the planar con-
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traction flows. With the stabilizing tensor-logarithmic for-
mulation, Fattal and Kupferman (2005) have also executed
time-dependent simulation of the lid-driven cavity flow
with the Oldroyd-B model. In fact, their tensor-logarithmic
formulation does not allow direct computation for the
steady state due to complicated logarithmic transform
involved in the formulation.

In this work, we consider the viscoelastic time-dependent
flows in a planar straight and 4:1 contraction channels
with traction boundaries specified at the inlet and outlet of
the pipe instead of flow velocity profiles.

2. Equations in 2D planar flow

In order to describe dynamic flow behavior of incom-
pressible fluids, we first require the equation of motion and
continuity equation

p(%‘é—erVV):—VerV-r, V.v=0. 1)
Here p is the density of the liquid, v the velocity, T the
extra-stress tensor. and p is the pressure. The gravity force
is neglected in the analysis and V is the usual gradient
operator in tensor calculus. When kinematic relation of the
extra-stress is specified in terms of the constitutive model,
the set of governing equations becomes complete for iso-
thermal incompressible viscoelastic flows.

In expressing viscoelastic property of the liquid, the
Leonov constitutive equation (Leonov, 1976) is employed,
since it may be the only model that can successfully
describe highly elastic flow phenomena with robust com-
putational stability. The differential viscoelastic constitu-
tive equations derived by Leonov can be written into the
following quite general form:

W= 2(3;?1)[@)M1‘1}’

I n
T= (lfs)G(gl) ct+2nse,

e= %(Vv-FVvT) R
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dr 204,

Here ¢ is the elastic strain tensor that explains elastig str%in
accumulation in the Finger measure during flow, Fi = 8_(;

+v-Ve is the total time derivative of ¢, %—VVT'C—C-VV

is the upper convected time derivative, G is the modulus,
0 is the relaxation time, =G0 is the total viscosity that
corresponds to the zero-shear viscosity and s is the retar-
dation parameter that specifies the solvent viscosity con-
tribution. The tensor ¢ reduces to the unit tensor 8 in the
rest state and this also serves as the initial condition in the
start-up flow from the rest. In the asymptotic limit of
0 — ©o where the material exhibits purely elastic behavior,
it becomes the total Finger strain tensor.
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I,=trc and L,=trc™" are the basic first and second invari-
ants of ¢, respectively, and they coincide in planar flows.
Due to the characteristic of the Leonov model, the third
invariant [; satisfies specific incompressibility condition
such as L, =dete=1. In addition to the linear viscoelastic
parameters, it contains 2 nonlinear constants m and »
(n>0), which can be determined from simple shear and
uniaxial extensional flow experiments. They control the
strength of shear thinning and extension hardening of the
liquid. However the value of the parameter m does not
have any effect on the flow characteristics here in 2D sit-
uation, since two invariants are identical. Thus in this study
we adjust only the parameter » to attain appropriate (pla-
nar) extension hardening characteristic. The total stress
tensor is obtained from the elastic potential ¥ based on the
Murnaghan’s relation. Since the extra-stress is invariant
under the addition of arbitrary isotropic terms, when one
presents numerical results it may be preferable to use

T= (l—s)G@) (c-8)+2nse instead in order for the stress

to vanish in the rest state.

The essential idea presented by Fattal and Kupferman
(2004) in reformulating the constitutive equations is the
tensor-logarithmic transformation of ¢ as follows:

h=loge. 3)

Here the logarithm operates as the isotropic tensor func-
tion, which implies the identical set of principal axes for
both ¢ and h. In the case of the Leonov model, this h
becomes another measure of elastic strain, that is, twice the
Hencky elastic strain. While ¢ becomes 6, h reduces to 0
in the rest state.

In the case of 2D planar flow, the final set of the Leonov
constitutive equations in the h-form has its closed form and
it has been given in (Kwon, 2004; Yoon and Kwon, 2005).
Actually the total set of eigenvalues in this 2D flow is 4,
-h and 0. In the notation of the h tensor the incompress-
ibility relation detc=1 becomes

trh=0. )

In this 2D analysis, h;;=—hy, h;3=0 and thus the vis-
coelastic constitutive equations add only 2 supplementary
unknowns such as h;; and h;, to the total set of variables.

3. Numerical procedure and boundary conditions

The geometric details of the flow domains in straight and
4:1 contraction channels are illustrated in Fig. 1. Since we
are employing the traction boundaries at the inlet and outlet
of the flow with stress free condition (h=0) at the inlet, rel-
atively long upstream and downstream channels are nec-
essary to effectively remove the disturbances introduced by
the actually unknown stress boundary conditions. However
the length of the channels that may not be long enough to
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Fig. 1. Schematic diagram of the problem domain for the flow in
(a) straight and (b) 4:1 contraction channels.

guarantee the accuracy of numerical results, is employed as
in the Fig. 1 to compromise the accuracy with the heavy
computational load in this time-dependent viscoelastic
flow modeling. A more detailed discussion follows after-
wards.

All the computational scheme except for the boundary
conditions is identical with the one employed in the pre-
vious studies (Kwon, 2004; Yoon and Kwon, 2005). With
the standard Galerkin formulation adopted as basic com-
putational framework, streamline-upwind/Petrov-Galerkin
(SUPG) method as well as discrete elastic viscous stress
splitting (DEVSS) (Guénette and Fortin, 1995) algorithm
is implemented. The upwinding algorithm developed by
Gupta (1997) has been applied.

As for the time integration of the evolution and momen-
tum equations, the implicit Euler method is applied. Even
though the time marching is only the 1* order in accuracy,
the computational load is quite heavy since it is fully
implicit and at every time step the values of the whole set
of nodal variables can be obtained only by solving the
complete linear system. The time steps have been manually
adjusted to preserve the stability and also to save the com-

(b)

Fig. 2. Partial view of the meshes employed in the computation.
(a) coarse and fine meshes for a straight channel; (b) a
mesh for a 4:1 contraction channel.

putation time, and they are in the range of 10°~107>x 0.

2 types of structured mesh for the straight channel and 1
of unstructured mesh for the contraction channel are
employed and their partial views are illustrated in Fig. 2.
Corresponding mesh details are given in Table 1. The flow
problem through the straight channel has been chosen in
order to investigate the proper mesh convergence as well
as to study complex nonlinear flow behavior. Thus the
structured meshes are employed in the study of the straight
pipe flow to avoid artificial numerical error possibly intro-
duced via non-uniform space discretization. For the anal-
ysis of the contraction flow, the finest mesh elements are
located near the contraction corner where numerical sin-
gularity occurs.

Table 1. Characteristics of the 2 meshes employed in the computation

Length of the side of No. of No. of No. of No. of
the smallest element elements linear nodes  quadratic nodes unknowns
Straight channel 4,500
’ 331 46,988
- Coarse mesh (structured) 113 (15x150x2) 2416 %
Straight channel 8,000
i 16,441 82,648
- Fine mesh (structured) 1120 (20x200x2) 4221 ’
4:1 contraction channel 0.035 11,006 5,824 22,653 113,908

(unstructured)
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Linear for pressure and strain rate and quadratic inter-
polations for velocity and h-tensor are applied for spatial
continuation of the variables. In order to mimic dimen-
sionless formulation, we simply assign unit values for G
and 0 (Hence the zero-shear viscosity =G0 also becomes
unit) and adjust the Deborah number (or the Reynolds
number) by the variation of the average flow rate (actually
by varying the traction force at the inlet of the channel) for
steady state computation. In the case of transient vis-
coelastic flow with constant traction forces, the flow rate
varies with time and thus the Deborah and Reynolds num-
bers are also time-dependent.

In order to solve the large nonlinear system of equations
introduced, the Newton iteration is used in linearizing the
system. As an estimation measure to determine the solution
convergence, the L., norm scaled with the maximum value
of the nodal variables in the computational domain is
employed. Hence when the variation of every nodal vari-
able in the Newton iteration does not exceed 10°* of its
value in the previous iteration, the algorithm concludes that
the converged solution is attained. For the viscoelastic vari-
ables, we examine the relative error in terms of the eigen-
value of the ¢-tensor. We have found that this convergence
criterion imposes less stringent condition on the compu-
tational procedure, and this criterion seems quite practical
and appropriate since we mainly observe the results in
terms of physically meaningful e-tensor or stress rather
than h.

Here we adopt the traction boundary condition. First all
the components of traction vanish at the outlet. On the
other hand, in the flow direction (x-axis) at the inlet, the
constant finite traction force is applied in terms of dimen-
sionless value of #/G where ¢, the surface traction (force
per unit area) in the x-direction. In the transverse direction
(y-axis), we set the boundary free from the traction force.
Since the evolution equation of h-tensor is of hyperbolic
type, we need to specify its values at the inlet boundary,
which play the role of initial conditions for the start of the
characteristic curves or cones. However those inlet bound-
ary values of h-tensor are not known. Here we simply
specify zero values for all components of h-tensor (stress
free condition) at the inlet, which requires some justifi-
cation for this rather arbitrary assignment. First this type of
boundary means that the region outside the inlet boundary
is considered to be a zero stress reservoir just like pressure
or heat reservoir in thermodynamics. In practice, the length
of the upstream channel has to be long enough to eliminate
the effect of this zero stress boundary. However in this
study, especially in the modeling of straight channel flow,
the pipe length is rather short to cut down the computa-
tional burden, and we simply regard the region outside the
flow domain as the zero stress reservoir.

Certainly one may employ the traction boundary con-
dition obtained from the analytic solution for the fully
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developed flow along the straight pipe. However it is appli-
cable only for 2D or axisymmetric case, since in the gen-
eral 3D fully developed flow the analytic solution for the
channel with an arbitrary cross-section is not known and
has to be obtained again numerically. Even in the 2D star-
tup flow, the boundary condition is not known, since it is
also time-dependent and highly oscillatory in general.
Hence in the current flow analysis we implement the sim-
ple condition of zero stress other than the fully developed
flow alternative.

4. Results and Discussion

This study mainly focuses on illustrating possible com-
plexity in time-dependent flow numerically described by
the viscoelastic constitutive equations, here specifically by
the Leonov model. However before explaining the main
results, it is worthwhile to mention the accuracy and the
stability characteristics of the current numerical scheme
augmented by the tensor-logarithmic transformation (3).

Although the detailed result is not presented in this paper,
we have found in the previous works (Kwon, 2004; Yoon
and Kwon, 2005) proper characteristics of mesh conver-
gence for the tensor-logarithmically transformed formula-
tion. Since we have adopted not the boundary condition
with velocity profile specified but the traction boundaries
both at the inlet and outlet, there may exist numerical arti-
fact that the flow rate at the inlet differs from that at the
outlet if the incompressibility condition is not appropriately
accounted in the computation domain. However the com-
putational results have shown that the flow rates at the inlet
and outlet coincide up to the 13" significant digit for both
straight and contraction pipe flows.

We define the dimensionless flow rate by the Deborah
number as

Uo

De= 7 (5)
where U is the average flow rate at the channel outlet and
H shown Fig. 1 is the width of the downstream channel.
Since we have chosen the valule of 1 for 6 and H, the Deb-
orah number is identical with the average flow rate U or
the total flow rates both at the inlet and outlet. As the New-
tonian viscous term becomes relatively large, the stability
of the system is dramatically improved. When we specify
5=0.01 with n=0.1 and p=0~0.01 (here the density p is

2
made dimensionless with %92—) for the Leonov model (4),

we have obtained the stable solution over De=300 (z/
G=~300) and stopped the computation due to no further
interest. This result of stability at extremely high Deorah
number agrees with results obtained in the previous works
(Hulsen, 2004; Hulsen et al., 2005). However when s
becomes 0.001, the limit Deborah number, over which sta-
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Fig. 3. The flow rate (the Deborah number) vs. traction force
with #=0.1 in the straight channel flow. (a) s=0.001 and
(b) s=0.01.

ble computation cannot be carried out, becomes finite in
the range of 6~30, the exact value of which depends on
the density.

In Fig. 3, one can observe the dependence of the steady
flow rate in terms of the Deborah number on the traction
force for s=0.001 and s=0.01 with various density in
straight channel flow. Fig. 3(b) also shows the comparison
of results for 2 different structured meshes, where quite
close coincidence may be observed.

Fig. 4 illustrates fluctuation of the time-dependent flow
rate for £/G=50, s=0.01 and p=0.0001. Even though we
can observe almost no difference between results of coarse
and fine meshes, in the enlarged view of Fig. 4(b) the solu-
tion starts to deviate at +6~0.4 and the values of steady
flow rate exhibit about 0.2% discrepancy. However we
neglect possible lack of mesh refinement and from now on
we only present results for the coarse mesh spatial dis-
cretization in order to lessen heavy computational load.

One can examine quite dramatic difference in the flow
behavior exhibited by inertia in Fig. 5 when the Newtonian
viscous effect is low (s=0.001). For £/G=5 and for all val-
ues of density the flow rate is almost identical at 0.202.
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Fig. 4. (a) The flow rate (the Deborah number) as a function of
time, and (b) the flow rate curve with enlarged y-axis (¢/
G=50, n=0.1, s=0.01, p=0.0001).

Whereas the flow rate immediately reaches its steady value
for inertialess flow, with small inertial force the flow
exhibits highly oscillatory behavior that alternates between
forward and even backward directions. This severe fluc-
tuation coincides with the numerical result obtained by
Sato and Richardson (1994), who have demonstrated oscil-
latory centerline velocity in planar Poiseuille flow and
compared it with the analytic solution.

Fig. 6 shows streamlines of this flow reversal, where
upper 5 figures illustrate a series of changing streamlines
from forward to backward and lower 4 exhibit backward to
forward reversal. One can see the variation of overall flow
rate in terms of the Deborah number. In comparison with
the total period of flow, the duration of these complicated
flow patterns caused by the flow reversal is quite short.
The last one in Fig. 6 corresponds to the streamlines at t/
0=10, when the flow rate De becomes 0.202. Then the
flow has almost reached its steady state. The straight
streamlines in the whole domain except in the vicinity of
inlet and outlet can be seen, which indirectly shows the
evidence for the development of the fully developed flow,
and the disturbance introduced by the inlet traction bound-
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Fig. 5. The flow rate (the Deborah number) as a function of time
(t/G=5, n=0.1, s=0.001). (a) p=0 with time in log-
arithmic scale and (b) p=0.001, p=0.01 in linear time
scale.

ary exhibited by the curved streamlines damps out imme-
diately.

In Fig. 7, the steady flow curves (flow rate vs. total trac-
tion force 4¢,/G) are depicted for inertialess and low Rey-
nolds number flows in 4: 1 contraction channel. Due to the
shear thinning characteristic of the liquid, the slopes of all
curves increase with the traction force. As the Reynolds
number (here p) increases, the overall flow rate decreases
since certain portion of the pressure force has to be allo-
cated for inertia, i.e., for moving mass of liquid. In the case
of contraction flow that contains singular point in the com-
putation domain, there exists some limit of the Deborah
number, over which stable computation is no longer pos-
sible, and such limit decreases with the Reynolds number.

The time variation of startup inertialess contraction flow
for 41/G=200, n=0.1, s=0.001 is depicted in Fig. 8. In the
case of inertialess startup flow (the cases of Fig. 5(a) as
well as Fig. 8) the flow rate instantly reaches finite value
that corresponds to the flow rate for the Newtonian liquid
with viscosity sn. In other words, the fluid velocity dis-
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Fig. 6. Streamlines of the straight channel flow (&/G=5, n=0.1,
5§=0.001, p=0.01) during the period of flow reversal and
for the steady state (the last one).

continuously attains its corresponding Newtonian value
from the rest state since there is no inertia by the assump-
tion. Furthermore without the retardation term, that is,
s=0, the inertialess flow velocity at the startup becomes
infinite due to instantaneous elastic deformation made pos-
sible from the constitutive modeling for the Maxwellian
liquid. The flow rate becomes as low as 3.83 at #
0=0.0125, the decrease of which results from the elastic
recovery of the liquid, and then slowly reaches its steady
limit of 50.7 after some fluctuations. In the case of such
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Fig. 7. The flow rate (the Deborah number) vs. total traction
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simple flow geometry as straight channel, the steady state
for the inertialess flow can be reached within #6=0.01 from
the onset of flow. However for more complex flow domain
such as the contraction flow, it takes about #/0=4 to attain
its steady state because of intricate rearrangements in the
flow field that is clearly demonstrated in the next figure.

Fig. 9 displays a time series of snapshots of streamlines
in the inertialess contraction flow under discussion. The
first one at #6=0.0001 presents streamlines that approx-
imately coincides with those for the inertialess Newtonian
flow with viscosity sn. When the flow rate is nearly the
lowest at #0=0.0125, the vortex almost disappears pos-
sibly due to elastic retraction (slowdown of flow rate
caused by elastic recovery). Then the lip vortex in addition
to the salient corner vortex appears and afterwards the two
vortices are combined (figure at #6=0.3) into one which
grows in size. At #/6=0.56 another lip vortex is created and
then grows. The coexistent vortices are approximately
comparable in size at #6=0.8 and then the newly created
vortex slowly becomes small and finally disappears. The
flow field recomposes the shape of the salient vortex into
its steady form and ultimately the steady state is attained.

This complicated transient flow behavior described
numerically with the Leonov viscoelastic constitutive
equations may be some unrealistic artifact produced by
exorbitantly simplified assumptions. In particular, the inlet
traction boundary condition may be considered far from
real situation. In reality, obtaining the boundary condition
that exactly duplicates the genuine system is not possible.
One may think of such boundary condition that specifies
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fully developed flow profile continuously increasing from
the rest to some desired values. Even though such con-
dition may not contain logical flaw, it seems more unre-
alistic or more remote from the physical system at least to
current authors. Actually at this stage the scientist himself
has to decide which simplifying assumption introduced in
order to make modeling possible is considered to be more
reasonable in some or in any sense.

5. Conclusions

In this study, we demonstrate complex transient behavior
of viscoelastic liquid described numerically with the
Leonov model for straight and contraction channel flow
domains. For completeness of computational formulation,
the so called traction boundaries are assigned for flow inlet
and outlet boundaries. At the inlet, finite traction force in
the flow direction with stress free condition is allocated
whereas the traction free condition is assigned at the outlet.
The numerical result has illustrated severe forward-back-
ward fluctuations of overall flow rate in inertial straight
channel flow ultimately followed by steady state of forward
flow. When the flow reversal occurs, the flow patterns
exhibit quite complicated time variation of streamlines. In
the inertialess flow, it takes much more time to reach the
steady state in the contraction flow than in the straight pipe
flow. Even in the inertialess contraction flow during startup,
quite distinct flow patterns have been observed such as
coexistence of multiple vortices and their merging into one.
Even though the traction boundary restriction imposed in
this computational scheme may be considered unrealistic,
this work at least demonstrates complicated flow phenom-
ena possible in startup viscoelastic fluid flow.
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