DOI QR코드

DOI QR Code

Changes in ROS-Scavenging Enzyme Activity in Rice (Oryza sativa L.) Exposed to High Salinity

  • 발행 : 2007.11.30

초록

We studied changes in the biochemical and physiological status and ROS-scavenging enzyme (superoxide dismutase, catalase and peroxidase) activity in leaves and roots of rice (Oryza sativa L.) plants exposed to high salinity. Under salt stress, the reduction in RWC (relative water content) in leaves was relatively severe in comparison with that of roots. The proline content was also significantly higher in leaves of rice plants following salt treatment. The activities of CAT and POX in roots increased with increasing NaCl concentration, but the activity of SOD decreased. These results suggest that the increase of endogenous proline is closely associated with the increase of CAT and POX activities, which may play important roles in salt tolerance. Therefore, we conclude that the alleviation of oxidative damage and increased resistance to salinity may result from the presence of efficient antioxidative systems.

키워드

참고문헌

  1. Ali MB, Chun HS, Kim BK, Lee CB. 2002. Cadmium-induced changes in antioxidant enzyme activities in rice (Oryza sativa L. cv. Dongjin). J Plant Biol 45: 134-140 https://doi.org/10.1007/BF03030305
  2. Alscher RG, Erturk N, Heath LS. 2002. Role of superoxide dismutases (SODs) in controlling oxidative stress in plants. J Exp Bot 53: 1331-1341 https://doi.org/10.1093/jexbot/53.372.1331
  3. Arntzen CJ. 1995. Salt-induced oxidative stress in chloroplast of pea plants. Plant Sci 105: 151-167 https://doi.org/10.1016/0168-9452(94)04047-8
  4. Azevedo-Neto AD, Prisco JT, Eneas-Filho J, Rolim Medeiros JV, Gomes-Filho E. 2005. Hydrogen peroxide pre-treatment induces salt-stress acclimation in maize plants. J Plant Physiol 162: 1114- 1122 https://doi.org/10.1016/j.jplph.2005.01.007
  5. Azevedo-Neto AD, Prico JT, Eneas-Filho J, Braga de Abreu CE, Gomes- Filho E. 2006. Effect of salt stress on antioxidative enzymes and lipid peroxidation in leaves and roots of salt-tolerant and saltsensitive maize genotypes. Environ Exp Bot 56: 235-241
  6. Baccouch S, Chaoui A, Ferjani EEI. 1998. Nickel-induced oxidative damage and antioxidant responses in Zea mays shoots. Plant Physiol Biochem 36: 689-694 https://doi.org/10.1016/S0981-9428(98)80018-1
  7. Badawi GH, Yamauchi Y, Shimada E, Sasaki R, Kawano N, Tanaka K, Tanaka K. 2004. Enhanced tolerance to salt stress and water deficit by overexpressing superoxide dismutase in tobacco (Nicotiana tabacum) chloroplasts. Plant Sci 166: 919-928 https://doi.org/10.1016/j.plantsci.2003.12.007
  8. Beauchamp C, Fridovich I. 1971. Superoxide dismutase, improved assays and an assay applicable to acrylamide gels. Anal Biochem 44: 267-291
  9. Benavides MP, Marconi PL, Gallego SM, Comba ME, Tomaro ML. 2000. Relationship between antioxidant defence systems and salt tolerance in Solanum tuberosum. Aust J Plant Physiol 27: 273-278
  10. Beyer WF, Fridovich I. 1987. Assaying for superoxide dismutase activity, some large consequences of minor changes in conditions. Anal Biochem 161: 559-566 https://doi.org/10.1016/0003-2697(87)90489-1
  11. Bor M, Ozdemir F, Turkan I. 2003. The effect of salt stress on lipid peroxidation and antioxidants in leaves of sugar beet Beta vulgaris L. and wild beet Beta maritime L. Plant Sci 164: 77-84 https://doi.org/10.1016/S0168-9452(02)00338-2
  12. Bowler C, Van Montagu M, Inze D. 1992. Superoxide dismutase and stress tolerance. Annu Rev Plant Physiol Plant Mol Biol 43: 83- 116 https://doi.org/10.1146/annurev.pp.43.060192.000503
  13. Cavalcanti FR, Oliveira JTA, Martins-Miranda AS, Viegas RA, Silveira JAG. 2004. Superoxide dismutase, catalase and peroxidase activi-November ties do not confer protection against oxidative damage in saltstressed cowpea leaves. New Phytol 163: 563-571 https://doi.org/10.1111/j.1469-8137.2004.01139.x
  14. Chen C, Dickman MB. 2005. Proline suppresses apoptosis in the fungal pathogen Colletotrichum trifolii. Proc Natl Acad Sci USA 102: 3459-3464
  15. Dash M, Panda SK. 2001. Salt stress induced changes in growth and enzyme activities in germinating Phaseolus mungo seeds. Biol Plant 44: 587-589 https://doi.org/10.1023/A:1013750905746
  16. Demiral T, Turkan I. 2004. Does exogenous glycinebetaine affect antioxidative system of rice seedlings under NaCl treatment? J Plant Physiol 161: 1089-1100 https://doi.org/10.1016/j.jplph.2004.03.009
  17. Demple B, Amabile-Cuevas CF. 1991. Redox redux, the control of oxidative stress responses. Cell 67: 837-839 https://doi.org/10.1016/0092-8674(91)90355-3
  18. Dhaliwhal GS, Arora R. 1999. Stresses in agroecosystems, concepts and approaches. In Environmental Stress in Crop Plants (Dhaliwal GS, Arora R. eds). Ajay Verma Common wealth Publishers. New Delhi. India. pp 1-18
  19. Dionisio-Sese ML, Tobita S. 1998. Antioxidant responses of rice seedlings to salinity stress. Plant Sci 135: 1-9 https://doi.org/10.1016/S0168-9452(98)00025-9
  20. Fadzillah NM, Gill V, Finch RP, Burdon RH. 1996. Chilling, oxidative stress and antioxidant responses in shoot cultures of rice. Planta 199: 552-556
  21. FAO. 2000. Global network on integrated soil management for sustainable use of salt-affected soils, available on; http://www.fal.org/ag/AGL./agll/spush/intro.htm (accessed May 10 2004)
  22. Foyer CH, Lelandais M, Kunert KJ. 1994. Photooxidative stress in plants. Physiol Plant 92: 696-717 https://doi.org/10.1111/j.1399-3054.1994.tb03042.x
  23. Gadallah MAA. 1999. Effects of proline and glycinebetaine on Vicia faba-response to salt stress. Biol Plant 42: 249-257 https://doi.org/10.1023/A:1002164719609
  24. Gomez JM, Jimenz A, Olmas E, Sevilla F. 2004. Location and effects of long-term NaCl stress on superoxide dismutase and ascorbate peroxidase isoenzymes of pea (Pisum sativum cv. Puget) chloroplasts. J Exp Bot 55: 119-130 https://doi.org/10.1093/jxb/erh013
  25. Gossett DR, Millhollon EP, Lucas MC. 1994. Antioxidant response to NaCl stress in salt-tolerant and salt-sensitive cultivars of cotton. Crop Sci 34: 706-714 https://doi.org/10.2135/cropsci1994.0011183X003400030020x
  26. Gossett DR, Banks SW, Millhollon EP, Lucas MC. 1996. Antioxidant Response to NaCl Stress in a Control and an NaCl-tolerant cotton cell line grown in the presence of paraquat, buthionine sulfoximine, and exogenous glutathione. Plant Physiol 112: 803- 809 https://doi.org/10.1104/pp.112.2.803
  27. Gueta-Dahan Y, Yaniv Z, Zilinskas BA, Ben-Hayyim G. 1997. Salt and oxidative stress, similar and specific responses and their relation to salt tolerance in Citrus. Planta 203: 460-469 https://doi.org/10.1007/s004250050215
  28. Gupta AS, Heinen JL, Holaday AS, Burke JJ, Allen RD. 1993. Increased resistance to oxidative stress in transgenic plants that overexpress chloroplastic Cu/Zn superoxide dismutase. Proc Natl Acad Sci USA 90: 1629-1633
  29. Gzik A. 1996. Accumulation of praline and pattern of $\alpha$-amino acids in sugar beet plants in response to osmotic, water and salt stress. Environ Exp Bot 36: 29-38 https://doi.org/10.1016/0098-8472(95)00046-1
  30. Hasegawa PM, Bressan RA, Zhu J-K, Bohnert HJ. 2000. Plant cellular and molecular responses to high salinity. Annu Rev Plant Physiol Plant Mol Biol 51: 463-499 https://doi.org/10.1146/annurev.arplant.51.1.463
  31. Hernandez JA, Del Rio LA, Sevilla F. 1994. Salt stress-induced changes in superoxide dismutase isozymes in leaves and mesophyll protoplasts from Vigna unguiculata L. Walp New Phytol 126: 37-44 https://doi.org/10.1111/j.1469-8137.1994.tb07527.x
  32. Hernandez JA, Olmos E, Corpas FJ, Sevilla F, Del Rio LA. 1995. Salt-induced oxidative stress in chloroplasts of pea plants. Plant Sci 105: 151-167 https://doi.org/10.1016/0168-9452(94)04047-8
  33. Hernandez J, Jimenez A, Mullineaux P, Sevilla F. 2000. Tolerance of pea plants (Pisum sativum) to long-term salt stress is associated with induction of antioxidant defences. Plant Cell Environ 23: 853-862 https://doi.org/10.1046/j.1365-3040.2000.00602.x
  34. Hernandez JA, Ferrer MA, Jimenez A, Barcelo AR, Sevilla F. 2001. Antioxidant systems and $O_{2}-/H_{2}O_{2}$ production in the apoplast of pea leaves. Its relation with salt-induced necrotic lesions in minor veins. Plant Physiol 127: 817-831 https://doi.org/10.1104/pp.010188
  35. Hoque MA, Okuma E, Banu MNA, Nakamura Y, Shimoishi Y, Murata Y. 2006. Exogenous proline mitigates the detrimental effects of salt stress more than exogenous betaine by increasing antioxidant enzyme activities. J Plant Physiol 164: 553-561 https://doi.org/10.1016/j.jplph.2006.03.010
  36. Jbir N, Chaibi W, Ammar S, Jemmali A, Ayadi A. 2001. Root growth and lignification of two wheat species differing in their sensitivity to NaCl, in response to salt stress. CR Acad Sci Paris 324: 863- 868
  37. Kavi KPB, Sangam S, Amrutha RN, Sri Laxmi P, Naidu KR, Rao KRSS, Sreenath Rao KJ, Reddy P, Theriappan N, Sreenivasulu S. 2005. Regulation of proline biosynthesis, degradation, uptake and transport in higher plants, its implications in plant growth and abiotic stress tolerance. Curr Sci 88: 424-438
  38. Kennedy BF, De Fillippis LF. 1999. Physiological and oxidative response to NaCl of the salt tolerant Grevillea ilicifolia and the salt sensitive Grevillea arenaria. J Plant Physiol 155: 746-754 https://doi.org/10.1016/S0176-1617(99)80092-3
  39. Khedr AHA, Abbas MA, Wahid AAA, Quick WP, Abogadallah GM. 2003. Proline induces the expression of salt-stress-responsive proteins and may improve the adaptation of Pancratium maritimum L. to salt-stress. J Exp Bot 54: 2553-2562 https://doi.org/10.1093/jxb/erg277
  40. Lee DH, Lee CB. 2000. Chilling stress-induced changes of antioxidant enzymes in the leaves of cucumber, in gel enzyme activity assays. Plant Sci 159: 75-85 https://doi.org/10.1016/S0168-9452(00)00326-5
  41. Lee DH, Kim YS, Lee CB. 2001. The inductive responses of the antioxidant enzymes by salt stress in the rice (Oryza sativa L.). J Plant Physiol 158: 737-745 https://doi.org/10.1078/0176-1617-00174
  42. Lin CC, Kao CH. 2001. Cell wall peroxidase activity, hydrogen peroxide level and NaCl-inhibited root growth of rice seedlings. Plant Soil 230: 135-143 https://doi.org/10.1023/A:1004876712476
  43. Lin CC, Kao CH. 2002. Osmotic stress-induced changes in cell wall peroxidase activity and hydrogen peroxide level in roots of rice seedling. Plant Growth Regul 37: 177-183 https://doi.org/10.1023/A:1020523017867
  44. Lowry OH, Rosebrough NJ, Fare AL, Randall RJ. 1951. Protein measurement with the folin phenol reagent. J Biol Chem 193: 265- 275
  45. Mansour MMF. 2000. Nitrogen containing compounds and adaptation of plants to salinity stress. Biol Plant 43: 491-500 https://doi.org/10.1023/A:1002873531707
  46. McCord JM. 2000. The evolution of free radicals and oxidative stress. Am J Med 108: 652-659 https://doi.org/10.1016/S0002-9343(00)00412-5
  47. Mittal R, Dubey RS. 1991. Behaviour of peroxidases in rice, changes in enzyme activity and isoforms in relation to salt tolerance. Plant Physiol Biochem 29: 31-40
  48. Mittler R. 2002. Oxidative stress, antioxidants and stress tolerance. Trends Plant Sci 7: 405-410 https://doi.org/10.1016/S1360-1385(02)02312-9
  49. Mittova V, Tal M, Volokita M, Guy M. 2002. Salt stress induces up-regulation of an efficient chloroplast antioxidant system in the salt-tolerant wild tomato species Lycopersicon pennellii but not in the cultivated species. Physiol Plant 115: 393-400 https://doi.org/10.1034/j.1399-3054.2002.1150309.x
  50. Mittova V, Tal M, Volokita M, Guy M. 2003. Up-regulation of the leaf mitochondrial and peroxisomal antioxidative systems in response to salt-induced oxidative stress in the wild salt-tolerant tomato species Lycopersicon pennellii. Plant Cell Environ 26: 845-856 https://doi.org/10.1046/j.1365-3040.2003.01016.x
  51. Moran JF, James EK, Rubio MC, Sarath G, Klucas RV, Becana M. 2003. Functional characterization and expression of a cytosolic ironsuperoxide dismutase from Cowpea root nodules. Plant Physiol 133: 773-782 https://doi.org/10.1104/pp.103.023010
  52. Olson PD, Varner JE. 1993. Hydrogen peroxide and lignification. Plant J 4: 887-892 https://doi.org/10.1046/j.1365-313X.1993.04050887.x
  53. Paleg LG, Stewart GR, Bradbeer JW. 1984. Proline and glycine-betaine influence on protein solvation. Plant Physiol 75: 974-978 https://doi.org/10.1104/pp.75.4.974
  54. Peltzer D. 2002. Differential temperature dependencies of antioxidative enzyme in two contrasting species,Fagus sylvatica and Coleus blumei. Plant Physiol Biochem 40: 141-150 https://doi.org/10.1016/S0981-9428(01)01352-3
  55. Pollard A, Wyn Jones RG. 1979. Enzyme activities in concentrated solutions of glycinebetaine and other solutes. Planta 144: 291-298 https://doi.org/10.1007/BF00388772
  56. Rajasekaran LR, Kriedemann PE, Aspinall D, Paleg LG. 1997. Physiological significance of proline and glycinebetaine, maintaining photosynthesis during NaCl stress in wheat. Photosynthetica 34: 357- 366 https://doi.org/10.1023/A:1006855816437
  57. Salekdeh GH, Siopongco J, Wade LJ, Ghareyazie B, Bennett J. 2002. A proteomic approach to analyzing drought- and salt-responsiveness in rice. Field Crops Res 76: 199-219 https://doi.org/10.1016/S0378-4290(02)00040-0
  58. Santos R, Herouart D, Puppo A, Touati D. 2000. Critical protective role of bacterial superoxide dismutase in Rhizobium-legume symbiosis. Mol Microbiol 38: 750-759 https://doi.org/10.1046/j.1365-2958.2000.02178.x
  59. Scandalios JG. 1993. Oxygen stress and superoxide dismutase. Plant Physiol 101: 7-12 https://doi.org/10.1104/pp.101.1.7
  60. Schmer L, Alaoui-Sosse B, Dizengremel P. 1995. Effect of salt stress on growth and on the detoxifying pathway of pedunculate oak seedling (Quercus robur L.). J Plant Physiol 147: 144-151 https://doi.org/10.1016/S0176-1617(11)81427-6
  61. Shigeoka S, Ishikawa T, Tamoi M, Miyagawa Y, Takeda T, Yabuta Y, et al. 2002. Regulation and function of ascorbate peroxidase isoenzymes. J Exp Bot 53: 1305-1319 https://doi.org/10.1093/jexbot/53.372.1305
  62. Shim IS, Momose Y, Yamamoto A, Kim DW, Usui K. 2003. Inhibition of catalase activity by oxidative stress and its relationship to salicylic acid accumulation in plants. Plant Growth Regul 39: 285- 292 https://doi.org/10.1023/A:1022861312375
  63. Singha S, Choudhuri MA. 1990. Effect of salinity (NaCl) stress on $H_{2}O_{2}$ metabolism in Vigna and Oryza seedlings. Biochem Physiol Pflanz 186: 6974
  64. Smart RE, Bingham GE. 1974. Rapid estimates of relative water content. Plant Physiol 53: 258-260 https://doi.org/10.1104/pp.53.2.258
  65. Sreenivasulu N, Grimm B, Wobus U, Weschke W. 2000. Differential response of antioxidant compounds to salinity stress in salt-tolerant and salt-sensitive seedlings of fox-tail millet (Setaria italica). Physiol Plant 109: 435-442 https://doi.org/10.1034/j.1399-3054.2000.100410.x
  66. Su J, Wu R. 2004. Stress-inducible synthesis of proline in transgenic rice confers faster growth under stress conditions than that with constitutive synthesis. Plant Sci 166: 941-948 https://doi.org/10.1016/j.plantsci.2003.12.004
  67. Toenissen GH. 1995. The Rockefeller Foundation's International Program on rice biotechnology. In Plant Biotechnology in Developing Countries (Altman DW, Watanabe KN. eds). R.G. Landes Company. pp 193-212
  68. Vaidyanathan H, Sivakumar P, Chakrabarty R, Thomas G. 2003. Scavenging of reactive oxygen species in NaCl-stressed rice (Oryza sativa L.)- differential response in salt-tolerant and sensitive varieties. Plant Sci 165: 1411-1418 https://doi.org/10.1016/j.plantsci.2003.08.005
  69. Weatherley PE. 1950. Studies in the water relation cotton plants, the field measurement of water deficit in leaves. New Phytol 49: 81- 87 https://doi.org/10.1111/j.1469-8137.1950.tb05146.x
  70. Woodbury W, Spencer AK, Stahman MA. 1971. An improved procedure for using ferricyanide for detecting catalase isozymes. Anal Biochem 44: 301-305 https://doi.org/10.1016/0003-2697(71)90375-7