Numerical Simulation of Regular Wave Transformation due to Wave-induced Current over a Submerged Elliptic Shoal

수중타원형 천퇴를 통과하는 규칙파의 파랑쇄파류에 의한 변형

  • Published : 2007.12.31

Abstract

The effect of wave and current interactions on regular wave transformation over a submerged elliptic shoal is investigated based on numerical simulations of the Vincent and Briggs experiment [Vincent, C.L., Briggs, M.J., 1989. Refraction-diffraction of irregular waves over a mound. Journal of Waterway, Port, Coastal and Ocean Engineering, 115(2), pp. 269-284]. The numerical simulations are conducted by constituting two numerical model systems: a combination of SWAN(a wave model) plus SHORECIRC(a current model) and a combination of REF/DIF 1(a wave model) plus SHORECIRC. A time dependent phase-resolving wave-current model, FUNWAVE, is also utilized to simulate the experiment. In the simulations, the breaking-induced currents defocus waves behind the shoal and bring on a wave shadow zone that shows relatively low wave height distributions. The computed results of the two model systems agree better with the measurements than the computed results obtained by neglecting wave-current interaction do. However, it is found that the radiation stresses for standing waves are misevaluated in the wave models. In addition, the results of FUNWAVE show very good agreement with the measurements. The agreement indicates that it is necessary to take into account the effect of breaking-induced current on wave refraction when wave-breaking occurs over a submerged shoal.

타원형 수중천퇴가 있는 지형을 통과하며 변형하는 파랑을 실험한 Vincent and Briggs(1989)의 실험조건을 수치모의하여 규칙파 변형에 대한 파랑과 흐름의 상호작용 효과를 연구하였다. 수치모의를 위해 흐름모형 SHORECIRC와 파랑모형 REF/DIF 1 그리고 SHORECIRC와 파랑모형 SWAN을 결합한 모형과 파랑과 흐름을 동시에 계산하는 FUNWAVE를 이용하였다. 이 수치모의로 부터 수중천퇴상에서 발생된 쇄파류는 수중천퇴후면의 파집중현상을 방해하고, 파랑을 천퇴중심축의 바깥쪽으로 굴절시켜, 파고를 상대적으로 감소시키는 역할을 하는 것을 확인할 수 있었다. 두 결합모형의 수치모의 결과는 쇄파류의 영향을 고려하지 않는 파랑모형만의 결과보다 실험치와 일치하였으나, 중복파가 발생되는 경우 SWAN모형과 REF/DIF모형으로부터 계산되어지는 잉여응력(radiation stress)에 문제가 있다는 것을 알 수 있었다. 또한, FUNWAVE를 이용한 수치모의는 실험결과와 완벽히 일치하였다. 이는 파랑쇄파류의 파랑변형에 미치는 역할의 중요성을 확인시켜주는 것이다.

Keywords

References

  1. Booij, N., Haagsma, IJ.G., Holthuijsen, L.H., Kieftenburg, A.T.M.M., Ris, R.C., van der Westhuysen, A.J., Zijlema, M. (2004). SWAN Cycle III version 40.41, User Manual. Delft University of Technology
  2. Chen, Q., Kirby, J.T., Dalrymple, R.A., Shi, F., Thornton, E.B. (2003). Boussinesq modeling of longshore current. Journal of Geophysical Research, 108(C11), 26-1-26-18
  3. Choi, J., Lim, C-H., Jeon, Y-J., Yoon, S.B. (2007). Numerical simulation of irregular wave transformation due to wave induced current. Journal of Hydro-environment Research. submitted
  4. Kennedy, A.B., Chen, Q., Kirby, J.T., Dalrymple, R.A. (2000). Boussinesq modeling of wave transformation, breaking, and runup. I: 1D. Journal of Waterway, Port, Coastal and Ocean Engineering, 126, 39-47 https://doi.org/10.1061/(ASCE)0733-950X(2000)126:1(39)
  5. Kirby, J.T., Dalrymple, R.A. (1994). Combined refraction/diffraction model REF/DIF 1, version 2.5, User Manual. Technical Report CACR-94-22, University of Delaware
  6. Kirby, J.T., Ozkan, H.T. (1994). Combined refraction/diffraction model for spectral wave conditions, REF/DIF S, version 1.1, User Manual. Technical Report CACR-94-04, University of Delaware
  7. Kirby, J.T., Wei, G., Chen, Q., Kennedy, A.B., Dalrymple, R.A. (1998). Fully nonlinear Boussinesq wave model, User Manual. Technical Report CACR-98-06, University of Delaware
  8. Longuet-Higgins, M.S., Stewart, R.W. (1962). Radiation stresses and mass transport in gravity waves with applications to surf-beats. J. Fluid Mech. 13. 481-504 https://doi.org/10.1017/S0022112062000877
  9. Longuet-Higgins, M.S., Stewart, R.W. (1964). Radiation stresses in water waves; a physical discussion with applications. Deep-Sea Res. 11. 529-562
  10. Mei, C.C. (1989). The applied dynamics of ocean surface waves. World Scientific, 453-463
  11. Putrevu, U., Svendsen, I.A. (1999). Three- dimensional dispersion of momentum in wave-induced nearshore currents. European Journal of Mechanics-B/Fluids, 409-427
  12. Svendsen, I.A., Hass, K., Zhao, Q. (2002). Quasi-3D Nearshore Circulation Model SHORECIRC version 2.4, User Manual. Technical Report, University of Delaware
  13. Vincent, C.L., Briggs, M.J. (1989). Refraction- diffraction of irregular waves over a mound. Journal of Waterway, Port, Coastal and Ocean Engineering, 115(2), 269-284 https://doi.org/10.1061/(ASCE)0733-950X(1989)115:2(269)
  14. Wei, G., Kirby, J.T., Grilli, S.T., Subramanya, R. (1995). A fully nonlinear Boussinesq model for surface waves. Part 1: Highly nonlinear unsteady wave. Journal of Fluid Mechanics, 294, 71-92 https://doi.org/10.1017/S0022112095002813
  15. Yoon, S.B., Cho, Y-S., Lee, C. (2004). Effects of breaking-induced currents on refractiondiffraction of irregular waves over submerged shoal. Ocean Engineering, 31, 633-652 https://doi.org/10.1016/j.oceaneng.2003.07.008