Effect of Torilis Fructus on Procollagen Biosynthesis and Activity of Matrix Metalloproteinase-I(MMP-1) in Human Dermal Fibroblast

사상자(Torilis Fructus)가 섬유아세포의 Procollagen 생합성과 Matrix metalloproteinase-I(MMP-1)의 활성에 미치는 영향

  • Koo, Bon-Suk (Health Food Research Group, KT&G Central Research Institute) ;
  • Hwang, Eui-Il (Health Food Research Group, KT&G Central Research Institute) ;
  • So, Seung-Ho (Health Food Research Group, KT&G Central Research Institute) ;
  • Lee, Seong-Kye (Health Food Research Group, KT&G Central Research Institute) ;
  • Han, Gyeong-Ho (Health Food Research Group, KT&G Central Research Institute) ;
  • Kim, Na-Mi (Health Food Research Group, KT&G Central Research Institute)
  • 구본석 (KT&G중앙연구원 건강식품연구소) ;
  • 황의일 (KT&G중앙연구원 건강식품연구소) ;
  • 소승호 (KT&G중앙연구원 건강식품연구소) ;
  • 이성계 (KT&G중앙연구원 건강식품연구소) ;
  • 한경호 (KT&G중앙연구원 건강식품연구소) ;
  • 김나미 (KT&G중앙연구원 건강식품연구소)
  • Published : 2007.12.31

Abstract

Skin wrinkle formations are associated with collagen synthesis and matrix metalloproteinase-I(MMP-1) activity. This study was carried out to find out skin wrinkle reducing components in Torilis Fructus. Torilis Fructus were extracted with 70% ethanol and the ethanol extracts were systematically fractionated with n-hexane, ethylacetate, n-butanol and distilled water. Among them, antiwrinkle component from n-hexane fraction was purified by several column chromatographies and HPLC, which identified as torilin by $^1H-NMR,\;^{13}C-NMR$ and ESI-MS. To determine cell viability, collagen biosynthesis and MMP-1 activity, human dermal fibroblast was treated with 1-5 ppm concentrations of Torilis Fructus extract fraction and torilin. Cell viability was showed 84-102% at all group treated with 1-5 ppm. Collagen synthesis was increased in all group, especially torilin-treated group was highest amount. Active forms of MMP-1 were decreased in all group. From these results, we consider that Torilis Fructus have several antiwrinkle components and torilin may be one of the effective components.

Keywords

References

  1. 식품공전 (2004) 식품의약품안전청, 서울
  2. 김창민 (2001) 원색한약도감, 144, 아카데미서적, 서울
  3. 정보섭, 신민교 (1990) 도해 향약(생약)대사전, 416, 영림 사, 서울
  4. 박종희 외 (2000) 상용약용식물도감, 196, 신일상사, 서울
  5. 한대석, 유시명 (1964) 본초학, 181, 동명사, 서울
  6. Nakazaki, M., Chikamatsu, H. and Maeda, M. (1966) The structure of torilin. Tetrahedron Lett. 37: 4499-4504
  7. Itokawa, H., Matsumoto, H., Mizuno, K., Watanabe, K., Morita, M. and Iitaka, Y. (1986) Structureof torilide and oxytorilide: Two novel germacranolides from Torilis japonica D. C. Chem. Pharm. Bull. 34: 4682-4686 https://doi.org/10.1248/cpb.34.4682
  8. Lee, M., S. and Ryu, K. S. (1978) Studies on the Constituents in the Ftuits of Torilis japonica D.C. Buli. KH Pharm. Sci. 6: 61-67
  9. Fujita S. (1990) Miscellaneous contributions to the essential oils of plant from various territories. II. On the components of essential oils of Torilis aponica(Houtt.) DC Yakugaku Zasshi. 110: 771-775 https://doi.org/10.1248/yakushi1947.110.10_771
  10. Kitajima J, Suzuki N, Tanaka Y. (1998) Guaiana- type sesquiterpenoid glycosides from Torilis japonica. Chem. Pharm. Bull. 46: 1743-1741 https://doi.org/10.1248/cpb.46.1743
  11. Itokawa H, Minashi S, Watanabe K, Natsumoto H, Hamanaka T. (1983) Studies on the constituents of crude drugs having inhibitory activity against contraction of the ileum caused by histamine of barium chloride. Shoyakugaku Zasshi. 37: 223-228
  12. Lee, E.B, Kim, S.H, Kim, T.H. (1998) Anti-inflammatory activities of Torilis japonica fruit. Kor. J. Pharm. 29: 384- 390
  13. Kim, M. S., Baek, J. H., Park, M. T., Sohn, T. K., Kim, S. E., Lee, J. J. and Kim, K.W. (2001) Anti-invasive activity of torilin, a sesquiterpene compound isolated from torilus japonica. Onco Rep. 8: 359-364
  14. Kim, M. S., Lee, Y. M., Moon, E. J. Kim, S. E., Lee, J. J. and Kim, K. W. (2000) Anti-angiogenic activity of torilin, a sesquiterpene compound isolated from Torilis japonica. Int. J. Cancer 87: 269-275 https://doi.org/10.1002/1097-0215(20000715)87:2<269::AID-IJC19>3.0.CO;2-W
  15. Park, W. S., Son, E. D., Nam, G. W., Kim, S. H., Noh, M. S., Lee, B. G., Jang, I. S., Kim, S. E., Lee, J. J. and Lee, C. H. (2003) Torilin from Torilis japonica, as q new inhibitor of testosterone 5..-reductase. Planta medica, 69: 459-461 https://doi.org/10.1055/s-2003-39717
  16. Kwak, Y. G., Kim, D. K., Park, S. A., Park, H., Jung, Y. H., Yoo, D. J. and Eun, J. S. (2006) Torilin from Torilus japonica (Houtt.) D. C. blocks hKv 1.5 channel current. Arch Pharm Res. 29: 834-839 https://doi.org/10.1007/BF02973902
  17. Kim, H. S., Park, P. U., Kim, K. H. and Park K. S. (1995) Hemoststic action of torilis fructus. Yakhak Hoeji 39: 55-60
  18. Hwang, E. I., Lee, S. K., So, S. H., Koo, B. S., Han, G. H. and Kim, N. M. (2007) Isolation and development of quantitative determination of torilin from the Torilis fructus. (Submitted to Kor. J. Pharmacogn.)
  19. Loosdrecht AA, Nennie E, Ossenkoppele GJ, Beelen RH, Langenhuijsen MM. (1991) Cell mediated cytotoxicity against U937 cells by human monocytes and macrophages in a modified colorimetric MTT assay. A methodological study. J Immunol Method, 141: 15-22 https://doi.org/10.1016/0022-1759(91)90205-T
  20. Parfitt AM, Simon LS, Villanueva AR, Krane SM. (1987) Procollagen type I carboxy-terminal extension peptide in serum as a marker of collagen biosynthesis in bone. Correlation with iliac bone formation rates and comparison with total alkaline phosphatase. J. Bone Miner Res. 2: 427-436 https://doi.org/10.1002/jbmr.5650020510
  21. Gross B. and Lapiere C. (1962) Collagenolytic activity in amphibian tissue a tissue culture assay. Proc. Natl. Acad. Sci. USA 54: 1197-1204
  22. 대한피부과학회 교과서 편찬위원회 (1994) 피부과학, 17, 고문각, 서울
  23. Ihn, H. (2005) Scleroderma, fibroblast, signaling and excessive extracellular matrix, Curr. Rheumatol. Res. 7: 156-162 https://doi.org/10.1007/s11926-005-0069-9
  24. Wulf, H. C., Sandby-Moller, J., Kobayasi, T., Gniadlecki, R. (2004) Skin aging and natural photoprotection. Micron 35: 85-191
  25. Ukeda, H,, Maeda, S., Ishii, T., Sawamura, M. (1997) Spectrophotometric assay for superoxide dismutase based on tetrazolium salt 3'-1-(phenylamino)-carbonyl-3,4 -tetrazolium]- bis(4-methoxy-6-nitro benzenesulfonic acid hydrate reduction by xanthine -xanthine oxidase. Anal Biochem. 5: 206- 210
  26. Nagase, H. and Woessner JF Jr. (1999) Matrix metalloproteinases. J. Biol. Chem. 274: 21491-21494 https://doi.org/10.1074/jbc.274.31.21491
  27. Rittie, L. and Fisher, G. J. (2002) UV- light-induced signal cascades and skin aging. Ageing Research Review 1: 705- 720 https://doi.org/10.1016/S1568-1637(02)00024-7