정규화된 D-QR-RLS 알고리즘의 특성 분석(II)

Characteristic Analysis of Normalized D-QR-RLS Algorithm (II)

  • 안봉만 (전북대학교 Next 사업단) ;
  • 황지원 (익산대학 컴퓨터과학과) ;
  • 조주필 (군산대학교 전자정보공학부)
  • 발행 : 2007.11.30

초록

제안된 알고리즘은 QR 형태의 LMS 알고리즘이 입력의 분산에 비례하게 되어있어 입력의 분산을 평균적인 측면에서 입력의 분산을 정규화하는 알고리즘중 하나이다. 본 논문에는 정규화 알고리즘의 수렴 특정 분석이 되어있다. 제안한 알고리즘의 성능분석을 위하여 간단한 FIR 시스템의 시스템 식별을 수행하였다. 이때 성능 비교에 참여한 알고리즘은 LMS, NLMS(normalized least mean square) 알고리즘이다. 그 결과 제안한 알고리즘은 NLMS 알고리즘과 매우 유사한 성능을 가짐을 확인하였다.

This paper proposes one of normalized QR-typed LMS (Least Mean Square) algorithms with computational complexity of O(N). This proposed algorithm shows the normalized property in terms of theoretical characteristics. This proposed algorithm is one of algorithms which normalize variance of input signal in terms of mean because QR-typed LMS is proportional to variance of input signal. In this paper, convergence characteristic analysis of normalized algorithm was made. Computer simulation was made by the algorithms used for echo canceller. Proposed algorithm has similar performance to theoretical value. And, we can see that proposed method shows similar one to performance of NLMS.by comparison among different algorithms.

키워드

참고문헌

  1. J. B. Evans, P. Xue and B. Liu, 'Analysis and implementation of variable step size adaptive algorithms,' IEEE Trans. on Signal Processing, vol. 41, no. 8, pp.2517-2535, August 1193 https://doi.org/10.1109/78.229885
  2. D. P. Mandic, 'A generalized normalized gradient descent algorithm,' IEEE Signal processing Letters, vol. 11, no. 2, Feb., 2004
  3. V. J. Mathews and Z. Xie, 'A stochastic gradient adaptive filter with gradient adaptive step size,' IEEE Trans. Signal Processing, vol. 41, pp.2075-2087, June 1993 https://doi.org/10.1109/78.218137
  4. W. P. Ang and B. Farhang-Boroujeny, 'A new class of gradient adatpve step-size LMS algorithms,' IEEE Trans. Signal Processing, vol. 49, pp.805-810, Apr. 2001 https://doi.org/10.1109/78.912925
  5. F. Albu and H.K. Kwan,'Fast block exact Gauss-Seidel pseudo affine projection algorithm,' Electronics letters, vol. 40, issue 22, 28, pp.1451-1453, Oct., 2004 https://doi.org/10.1049/el:20046320
  6. F. Albu and H.K. Kwan, 'A new block exact affine projection algorithm [acoustic echo cancellation system example],' Circuits and Systems, 2005. ISCAS 2005. IEEE International Symposium on 23-26, Vol. 5, pp.4337 - 4340, May 2005
  7. F. Albu and A. Fagan, 'The Gauss-Seidel pseudo affine projection algorithm and its application for echo cancellation,' Signals, Systems and Computers, 2003. Conference Record of the Thirty-Seventh Asilomar Conference on Volume 2, pp.1303 - 1306, Nov., 2003
  8. Z. S. Liu, 'QR methods of O(N) complexity in adaptive parameter estimation,' IEEE Trans, Signal Processing, vol. 43, pp.720-729, 1995 https://doi.org/10.1109/78.370626
  9. Z. S. Liu and J. Li, 'A QR-based least mean squares algorithm for adaptive parameter estimation,' IEEE Trans. Circuits Syst., vol. 45, pp.321-329, Mar. 1998 https://doi.org/10.1109/82.664238
  10. S. C. Chan, X. X. Yang, 'Improved approximate QR-LS algorithms for adaptive filtering,' IEEE Transactions on Circuits and Systems-II: Express Briefs, vol. 51, Issue 1, pp.29 - 39, Jan 2004 https://doi.org/10.1109/TCSII.2003.821514
  11. S. C. Chan, Y. Zhou and W. Y. Lau, 'New Approximate QR-LS Algorithms for Minimum Output Energy(MOE) Receivers in DS-CDMA Communication Systems,' IEEE International Symposium on Circuits and Systems, vol. 3, pp.2631 - 2634, May 2005
  12. 안봉만, 조주필, 황지원, '정규화된 D-QR-RLS 알고리즘의 특성 분석(I)(KICS2007-02-067),' 한국통신학회
  13. J. G. Proakis, C. M. Rader, F. Ling and C. L. Nikias, Advanced Digital Signal Processing, Macmillan Pubishing Co., 1992