M진 위상 신호 방식에 효과적인 다상 서명 수열

Polyphase Signature Sequences for M-ary Phase Signaling

  • 박소령 (가톨릭대학교 정보통신전자공학부) ;
  • 송익호 (한국과학기술원 전자전산학과)
  • 발행 : 2007.11.30

초록

이 논문에서는, 일반 홀상관 (general odd correlation) 성질이 비동기 (asynchronous) M진 위상 신호 (M-ary phase signal) 방식에 알맞은 다상 (polyphase) 서명 수열 (signature sequence) 집합을 제안하고 상관 성질을 분석한다. 또한, 제안한 수열과 짝상관 (even correlation) 성질이 좋은 기존 다상 수열인 FZC (Frank-Zadoff-Chu) 수열, 짝상관과 홀상관이 같은 EOE (equivalent odd and even correlation) 수열을 최대 절대 상관값을 (the maximum magnitude of correlations) 사용하여 상관 성질을 견주어 본다. M진 위상 신호 방식을 사용한 직접수열 부호분할 다중접속 (direct sequence code division multiple access: DS/CDMA) 시스템에서 제안한 수열과 FZC 수열을 사용할 때를 모의 실험한 결과, 다중 경로 성분이 존재할 때 제안한 수열을 쓴 시스템 성능이 FZC 수열을 쓸 때보다 더 나음을 보인다.

In this paper, we propose a class of polyphase signature sequences, whose general odd correlation properties are useful for M-ary phase signaling systems. The maximum magnitude of the general odd correlation functions of the proposed sequences are investigated and compared with those of FZC (Frank-Zadoff-Chu) sequences and those of EOE (equivalent odd and even correlation) sequences. The performance of the asynchronous M-ary phase signaling systems using the proposed sequences is simulated and compared with that using FZC sequences in direct sequence code division multiple access (DS/CDMA) systems. The performance of the system using the proposed sequence is shown to be better than that using FZC sequences when the multipath fading is in existence.

키워드

참고문헌

  1. J.S. Cha, S. Kameda, M. Yokoyama, H. Nakase, K. Masu, and K. Tsubouchi, 'New binary sequences with zero-correlation duration for approximately synchronized CDMA,' Electronics Letters, vol. 36, pp. 991-993, May 2000 https://doi.org/10.1049/el:20000703
  2. B. Natarajan, Z. Wu, C.R. Nassar, and S. Shattil, 'Large set of CI spreading codes for high-capacity MC-CDMA,' IEEE Trans. Commun., vol. 52, pp. 1862-1866, November 2004 https://doi.org/10.1109/TCOMM.2004.836564
  3. S.P. Ponnaluri and T. Guess, 'Signature sequence and training design for overloaded CDMA systems,' IEEE Trans. Wireless Commun., vol. 6, pp. 1337-1345, April 2007 https://doi.org/10.1109/TWC.2007.348330
  4. M.B. Pursley, 'Performance evaluation for phase coded spread-spectrum multiple-access communication - Part I: system analysis,' IEEE Trans. Commun., vol. 25, pp. 795-599, August 1977 https://doi.org/10.1109/TCOM.1977.1093915
  5. J.S. No and P.V. Kumar 'A new family of binary pseudorandom sequences having optimal periodic correlation properties and large linear span,' IEEE Trans. Inform. Theory, vol. 35, pp. 371-379, March 1989 https://doi.org/10.1109/18.32131
  6. T. Moriuchi and K. Imamura, 'Balanced nonbinary sequences with good periodic correlation properties obtained from modified Kumar-Moreno sequences,' IEEE Trans. Inform. Theory, vol. 41, pp. 572-576, March 1995 https://doi.org/10.1109/18.370153
  7. S. Rahardja, W. Ser, and Z. Lin, 'UCHT-based complex sequences for asynchronous CDMA system,' IEEE Trans. Commun., vol. 51, pp. 618-626, April 2003 https://doi.org/10.1109/TCOMM.2003.810798
  8. K.G. Paterson and P.J.G. Lothian, 'Bounds on partial correlations of sequences,' IEEE Trans. Inform. Theory, vol. 44, pp. 1164-1175, May 1998 https://doi.org/10.1109/18.669265
  9. D.V. Sarwate, 'Bounds on crosscorrelation and autocorrelation of sequences,' IEEE Trans. Inform. Theory, vol. 25, pp. 720-724, November 1979 https://doi.org/10.1109/TIT.1979.1056116
  10. D.C. Chu, 'Polyphase codes with good periodic correlation properties,' IEEE Trans. Inform. Theory, vol. 18, pp. 531-532, July 1972 https://doi.org/10.1109/TIT.1972.1054840
  11. R.L. Frank, 'Comments on 'Polyphase codes with good correlation properties',' IEEE Trans. Inform. Theory, vol. 19, p. 244, March 1973
  12. H. Fukumasa, R. Kohno, and H. Imai, 'Design of psuedonoise sequences with good odd and even correlation properties for DS/CDMA,' IEEE J. Select. Areas Commun., vol. 12, pp. 828-836, June 1994 https://doi.org/10.1109/49.298056
  13. L.R. Welch, 'Lower bounds on the maximum cross correlation of signals,' IEEE Trans. Inform. Theory, vol. 20, pp. 397-399, May 1974 https://doi.org/10.1109/TIT.1974.1055219
  14. R. Gold, 'Maximal recursive sequences with 3-valued cross-correlation functions,' IEEE Trans. Inform. Theory, vol. 14, pp. 154-156, November 1968 https://doi.org/10.1109/TIT.1968.1054106