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ABSTRACT

An adaptive K-best detection scheme is proposed for MIMO systems. The proposed scheme changes the
number of survivor paths, K based on the degree of the reliability of Zero-Forcing (ZF) estimates at each K-best
step. The critical drawback of the fixed K-best detection is that the correct path’s metric may be temporarily
larger than K minimum paths metrics due to imperfect interference cancellation by the incorrect ZF estimates.
Based on the observation that there are insignificant differences among path metrics (ML distances) when the ZF
estimates are incorrect, we use the ratio of the minimum ML distance to the second minimum as a reliability
indicator for the ZF estimates. So, we adaptively select the value of K according to the ML distance ratio. It is
shown that the proposed scheme achieves the significant improvement over the conventional fixed K-best scheme.
The proposed scheme effectively achieves the performance of large K-best system while maintaining the overall
average computation complexity much smaller than that of large K system.
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I. Introduction

Nowadays, Multiple-input

(MIMO) wireless communication system has

multiple-output

received significant attention, due to the rapid
development of high-speed broadband wireless
communication  systems  employing  multiple
transmit and receive antennas. The theoretical
results show that MIMO systems can provide
enormous capacity gains, since multi-antenna
communications allows for information
transmission at very high rates. The major issue
of concern is to keep the computational
complexity of the decoding algorithm within
(ZF) and

Minimum Mean Square Error (MMSE) are simple

reasonable  bounds.  Zero-Forcing
detection algorithm that linearly estimate the
transmitted signals. Vertical Bell Laboratories
Layered Space-Time (V-BLAST) is a well known
non-linear detection algorithm using symbol

Bl Maximum Likelihood Detection

cancellation
(MLD) with Euclidean distance is another
non-linear detection algorithm, which achieves the
theoretical optimal performance among various
MIMO detection algorithms. However, MLD
requires exponential complexity refer to the
number of transmit antennas.

We mneed to reduce the computational
complexity of the MLD algorithm for practical
implementation of MIMO system. The K-best
algorithm (or  M-algorithm)
exponential complexity problem of the MLD

overcomes  the

algorithm because it makes the complexity
become proportional to the number of transmit
MBI - Byen though, it has the
irreducible errors from the selected path metric

antennas

crossing. In M they proposed combining ZF and
K-best algorithm (the ZF K-best algorithm
hereafter) for MIMO systemsmm. It used the
estimates from ZF to supplement the path metric
crossing problem of the K-best algorithm.
However, there is a performance boundary of the
ZF K-best algorithm due to the incorrect estimates
from ZF. If the performance of the ZF K-best
algorithm approaches to that of the MILD, it
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requires a very large number of survivor paths X,
which causes the computational complexity to
approach to the complexity of the MLD i

The conventional variable K-best algorithm
adaptively controls K in accordance with the
®1 Therefore, this algorithm
can complement the drawback of the fixed K-best

measured SNR value

scheme. However, this algorithm can not
adaptively change K against the instantaneous
variation of the channel condition since this
algorithm controls K based on the average noise
power, which is the main drawback of these
algorithms.

In this paper, we propose an adaptive K-best
algorithm which adaptively changes K according
to the accuracy of the estimates from ZF. For the
case when the minimal ML distance among all
possible paths is much smaller than the second
minimal one, which means that the channel
environment is good and the estimates from ZF
are reliable, we decrease the value of K. In the
reverse case, K should be increased in order not
to miss correct path in the possible candidate set.
The proposed adaptive K-best algorithm achieves
significantly improved performance compared to
the conventional K-best algorithm and approaches
the performance of the MLD with much lower
computational complexity. The remainder of the
paper is organized as follows: The section II
describes the basic MIMO system considered in
this paper and the section III explains the
conventional detection algorithms. The proposed
adaptive K-best algorithm is introduced in the
section IV. In the section V, the performance of
the proposed algorithm is evaluated through
computer simulations. Finally, we present the

conclusion in the section VL

o. MIMO System

We consider a MIMO system which consists of
N transmit and L receive antennas. The system

can be described by:

z=Hs+n 6]
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where s is the N dimensional transmit vector,
each element of which is chosen from a
(complex-valued) constellation, H is the LxN
complex channel matrix, x is received vector, and
n is an L dimensional complex AWGN vector.
We assume Rayleigh fading where the elements
of H are independent complex Gaussian. We
assume that the channel matrix H is known by
the receiver and remains constant over the data
symbol duration.

II. Conventional Signal Detection
Algorithms

3.1 Zero-forcing Linear Detection
The Zero-forcing (ZF) front-end is given by :

s=H'zg Q)

whete H'=(H7H) 'H” denotes the pseudo
inverse of the channel matrix & and H' denotes
the Hermitian conjugate. Each element of s is
then sliced to the nearest constellation point of
possible  transmitted signals. Thus, the ZF
algorithm obtains detected signal s by slicing .
However, noise enhancement in s results in a
significant performance degradation.

3.2 Maximum Likelihood Detection

The Maximum Likelihood Detection (MLD)
performs vector decoding and is optimal in the
sense of minimizing the error probability. The
MLD evalvates the Euclidean distance between
the received symbol vector x and replicated
symbol vectors Hs;, and then, the estimate of the

transmitted signal vector is determined as follows:

§ = arg min ||x - Hs, “2 3
s,

i

where the minimization is performed over all
possible transmit vector symbols s;’s. We let Mc
denote the number of constellation points for each

transmit antenna, a brute force implementation
requires an exhaustive search over a total of Mc"
vector symbols making the decoding complexity
of this detection increase exponentially in the

number of transmit antennas.

3.3 K-best Algorithm

The K-best algorithm is based on a tree search
decoding technique. It has been extensively
studied because this algorithm reduces the
computational complexity of the MLD with
approach to the MLD performance. Let us rewrite
(3) as:

)

where H; is the j-th column of H, and s is
the j-th component of vector s;,, and if the

components of s are estimated one after another
it is seen that the MLD algorithm is related to
sequence estimation. The metric of tree search is
defined by :

2
] . ]
u(s; ™, n) =arg min

[n]
s

i

x-SHys' | .n2l ()

j=1 1

where n is the step count of the tree search
process; sE."] is the n-dimensional partial vector of
possible signal candidates at the n-th step node,
sl is the jth element of s". With the
conventional K-best algorithm, only K partial
vectors for survive among possible sets of vectors
using the metric, as shown in fig. 1. At each
step n, the K-best algorithm has a list of X nodes
in the tree. For each node in the list, the
algorithm calculates the norms of its sub-nodes
according to Eq.(5). Of the KM resulting norms,
the K-best are put in the list and the
corresponding nodes become the new survivors.

The complexity of this algorithm is linear in
N. Note that the number of metric computations
with the K-best algorithm is only Mc+KMc(N-1),
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whereas the MLD requires Mc". It has the

additional advantage of a convenient
implementation since its processing time is
constant. However, the K-best algorithm cannot
guarantee the survival of ML paths with overall
possible candidates, because the metrics of the
correct path can be temporarily larger than K
smallest path metrics. This is because the
remaining undetected symbols contribute to the
received signal vector x as the correlated

non-Gaussian interferences.
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Fig. 1 Example of a search tree with K-best scheme.
At each node, the best (K=4) paths are retained.
Deleted paths are not shown. (with QPSK)

3.4 Combining ZF and K-best Algorithms

In [1], [3] they proposed the modified K-best
algorithm. In the ZF K-best scheme, the ZF
algorithm and the modified K-best algorithm are
effectively combined. The most noticeable feature
of the ZF K-best scheme is that the ZF algorithm
improves the decoding accuracy of the original
K-best algorithm. The ZF K-best algorithm system
block diagram is shown in fig. 2. The Signal
processing for the modified K-best block is
described as follows. Instead of Eq. (5), the
metric at the n-th step is given by:

” " N
(s, 1) = arg min x—(gHjs;] + 3 H].&mj
sim J=1 Jj=n+l (6)
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Note that the rest of the partially estimated
signal vector s is replaced by ‘;j, zr» Which is
output by the ZF block. This is equivalent
interference cancellation operation. The final

estimate vector s is given by :

§=argmin(g'(s™, N))' ,n>1 Q)
s-[N]

i

However, the ZF K-best algorithm also can not
guarantee the survival of ML paths with all
possible candidates, because the incorrect ZF
detection causes incorrect interference cancellation
introduces rather significant correlated
non-Gaussian interference to the path metric
calculation. If we want to make the performance
of the ZF K-best algorithm approach to the MLD,
we need very large value of K, however, the
computational complexity will approach to that of
the MLD. As a good trade-off for this problem,
we propose the adaptive ZF K-best algorithm  for
the MIMO systems, where we adaptively change
the number of K observing the path metrics at

each step.

‘ZF K-best Signal Detection Scheme

, — by |
R | X4 & A
T_@ Xz %, Modified Sy

ZF N Kebest
H MLD

5 ~
RuiN] | X > " 5.

Fig. 2 System block diagram of the conventional ZF
K-best algorithms

3.5 Conventional Variable K-best Algorithms

Fig. 3 illustrates the principle of the
conventional variable K-best algorithm . The
conventional variable K-best scheme adaptively
controls K in accordance with the estimated noise
power (or SNR value). Therefore, this algorithm
can complement the drawback of the K-best
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schemes by using fixed K. The threshold at the
n-th step is calculated as

An = u’(nﬁmin) +X02 (8)

where 4/, .\is the minimum accumulated
branch metric at the nth stp, X is a
predetermined fixed value, and o° is the measured
noise power. The X value is a parameter that
achieves a tradeoff between the computational
complexity and the achievable SER. Therefore, the
conventional variable K-best scheme reduce the
complexity of the fixed K-best scheme method
while maintaining close to optimal performance.
However, this algorithm can not adaptively change
K against the instantaneous variation of the
channel condition since this algorithm controls K
based on the average noise power, which is the
main drawback of these algorithms. Simulation
results in the section V reveals that this algorithm
requires significantly higher complexity even with
inferior error rate performance compared to the

proposed adaptive scheme.

Surviver paths

Threshold A,

L 4

Ha i Symbel path candidates

Figure 3. Example of the variable K-best based on the
noise power.

IV. Proposed Adaptive K-best
Algorithm

In this section, we will explain the proposed
adaptive K-best algorithm. It consists of initial
reordering, path metric (ML distance) computation
and adaptive selection of K at each step. The
system block diagram of the proposed scheme is
shown in fig. 4. First, ZF block generates the

initial estimate vector s ,. from the received

signal vector x, where the ZF block performs the
same signal processing operation described in
Section III-1.

Proposed Adaptive 2F K-best Signal Detection Scheme

1y

) &
& T adepive [T

£% onerng Kebest 2

zF | Byusing | MLD .

i L i

v : BT x
‘W Xy &,

§

Fig. 4 System block diagram of proposed adaptive ZF
K-best algorithms with ordering

Secondly, each column of matrix H and §j7 2
comporents are rearranged according to the order
of | &S [?, the norm of the pseudo inverse of
H; in the ZF block. This implies that we change
the K-best detection order from the symbol with
the lowest SNR to the symbol with highest SNR,
which  reduces the incorrect interference
cancellation effect observed in the conventional
ZF K-best algorithm.

After ordering, we employ K-best MIMO
detection. The distinguishable feature of the
proposed scheme is to adaptively change K based
on, so-called reliability indicator for the ZF
estimates at each step. In the first step of the
K-best block, the number of Mc ML distance is
computed and sorted. If the estimate from ZF is
correct, the minimal ML distance is much smaller
than the other ML distances. Otherwise, there is
not so big difference among the minimal ML
distance and the other ML distances due to the
incorrect interference cancellation in the term
j:;zvﬂf.{j;j’” in Eq.(6). So, in the proposed
scheme, we use the ratio of the second minimal
ML distance to the minimal ML distance denoted
by v to check the ZF estimation reliability. In
fig. 4, we show the CDF (Cumulative Distribution
Function) of the ML distance ratio, ~ with
16QAM, Eb/No=15dB with N=L=3 and N=L=4
system, respectively.
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We can see that the ML distance ratio, v for
the case of incorrect ZF estimate is mainly
distributed in the region of small values, r <2 in
the fig. 5. On the other hand, the ML distance
ratio, v for the correct ZF estimate case is
always larger than a certain threshold which is
around 2 in fig. 4. From this observation, we
conclude that the ML distance ratio, v is a good
indicator for the reliability of the ZF estimates.
Consequently, the low ML distance ratio means
the bad channel environment or inaccurately
detected estimates from ZF and the high ML
distance ratio means that the overall estimates
detected by ZF are accurate. For the case when
this ratio is large, that is, ZF estimation is
reliable, we can successfully trace the correct path
metric even with small K. On the other hand, for
the case of small ratio, it is probable that the
correct path metric deviates from the minimum
value, which implies that we have to increase the
possible candidates for the correct path, ie., we

have to increase K.

Probabilty of { 7% 1

Probebisty of {144

Yiow

& IR

S

A S P

23 4 5 BT & 5B W34S B U KGR
3

Fig. 5 The ML distance ratio (with 16QAM and
Eb/No=15dB): The Cumulative Distribution Function of the
second minimum ML distance to the first minimum ML
distance ratio in each K-best step
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The proposed adaptive K-best algorithm uses
three valued K and adaptively change it according
to ML distance ratio at each K-best step.
Adaptation criterion is as follows :

1) If the ML distance ratio, v is larger than ~,, ,

channel environment is good, accurate
estimates from ZF detection = set K=Kmin.

2) If the ML distance ratio, v is larger than +,,
but less than =, , : channel environment is
bad, inaccurate estimates from ZF detection =
set K=Knig.

3) If the ML distance ratio, ~ is less than =,
channel environment is the worst unreliable
estimates from ZF detection = set K=Kmax.

We set the threshold parameters, =, =2 and

Yhign =7 based on the observation made in fig. 4.

By using this criterion, the proposed adaptive

K-best algorithm can reduce the metric

computation complexity while achieving almost

the same performance as the system with large K.
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Fig. 6 Example of a search tree with adaptive ZF
K-best scheme (with QPSK).

V. Simulation Results

In this section, we illustrate simulation results
for the proposed adaptive K-best algorithm for
N=L=3, N=L=4 antennas with 16QAM modulation
respectively. Rayleigh fading model is assumed
for all propagation paths. The SER performance
versus Eb/No with N=L=3 is shown in fig. 7. For
SER=10", the proposed algorithm with (Kmin, Kmid,
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Kwa)=(1, 16, 32) achieves about 2dB
improvement over the conventional fixed K-best
algorithm with K=16 while maintaining less than
12% metric computation at Eh/No=20dB (see
Table 1). The proposed algorithm also achieves
about 2dB improvement over the conventional
variable K-best algorithm in [8] with X=1800,
K=1~32 while maintaining less than 14% metric
computation at Ebh/No=20dB. Compared to the
MLD algorithm, the performance degradation of
the proposed algorithm with (Kumin, Kumia, Kmae)=(1,
16, 32) is still rather significant, however only
3.5% metric computations are required at
Eb/No=15dB (see Table 1).

The SER performance versus Eb/No with
N=L=4 is shown in fig. 8. For SER=107, the
proposed algorithm with (Kmin, Kmid, Kme) = (1,
16, 32) achieves about 3.2dB improvement over
the conventional fixed K-best algorithm with K =
16 while maintaining less then 12% metric
computation Eb/No=20dB (see Table 1). The
proposed algorithm also achieves about 2.5dB
improvement over the conventional variable K-best
algorithm in ™ with X=1800, Kk=1~32 while
maintaining less than 14% metric computation at
Eb/No=20dB. Compared to the MLD algorithm,
the performance degradation of the proposed
algorithm with (Kmin, Kmig, Kmax) = (1, 16, 32) is
still rather significant. However, only 0.4% metric
computations are required at Eb/No=15dB (see
Table 1).

Table 1. The number of metric computations versus Tx
antennas and modulation level with MLD, ZF/K-best and
Proposed adaptive K-best scheme

Number of metric computations
Convention
Propos| al variable Convention .
N|ENe | eq ZF/K-best | al ZF/K-best
(dB) X=1800
Ke
(1,163 (llf Te | K= |K=16
2)
15 145 518
3] 20 62 445 114 | 528 | 4096
25 50 304
15 262 776
4| 20 94 701 208 | 784 |65536
25 71 541

—6— Variabie K-bestX=1800) C T - N__--Z

—6— ProposedK(1,18.32) Ll __ ————— ==
—_—n ¢ !

i
' . L
o 5 0 0 E E3 El

Fig. 7 SER versus Eb/No per Rx antenna for
N=L=3 with 16QAM

| ——6— Varabl Koastte 500}

B PrpcasdX(,16.2))

[

s g [

Fig. 8 SER versus Eb/No per Rx antenna for
N=L=4 with 16QAM

The number of metric computation of each
detection scheme is shown in Table 1. The
proposed adaptive K-best scheme is simulated
with Q=16 and N=L=3, N=L=4 antennas
respectively along with the results of the
conventional ZF K-best and the MLD. The
proposed algorithm achieves about 88% metric
computation reduction from the conventional
ZF/K-best algorithm with K=16 and achieves
about 86% metric computation reduction from the
conventional variable K-best algorithm with
X=1800, K=1~32 at Eb/No=20dB. Furthermore, in
high SNR (Eb/No =20dB, 25dB), the proposed
scheme achieves more than 50% computation
reduction even compared to the case of K=4. The
occurrence probability of each K in the proposed
adaptive scheme is given in Table 2. At each
Eb/No, K=1 is dominant over K=16 or 32. This
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means that just a single survivor path is enough
to trace the correct path for most case and thus,
the proposed algorithm can significantly reduce
metric computation, while achieving almost the
same performance as the system with large K.

Table 2. The occurrence probability of each K with
N=L=3, and 16QAM

Ey/No (dB) 15 20 25
Pr[K=1] 84.94%| 9622%| 98.96%
Pr[K=16] 6.4% 2.07% 0.66%
Pr{K=32] .8.64% 1.69% 0.46%

VI. Conclusions

We proposed an adaptive K-best detection
scheme for MIMO systems based on the ZF and
K-best algorithm. After ordering each component
of ZF output estimates following the order of the
norm of pseudo inverse, the proposed scheme
changes the number of candidate according to the
ML distance ratio at ecach K-best step. It is
observed that the proposed algorithm offers
significant reduction of computational complexity
compared with the conventional ZF K-best
algorithm and variable K-best algorithm while
maintaining the improved SER performance.
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