Goal-Pareto based NSGA-II Algorithm for Multiobjective Optimization

다목적 최적화를 위한 Goal-Pareto 기반의 NSGA-II 알고리즘

  • 박순규 (숭실대학교 정보통신전자공학부 통신 및 신호처리연구실) ;
  • 이수복 (숭실대학교 정보통신전자공학부 통신 및 신호처리연구실) ;
  • 이원철 (숭실대학교 정보통신전자공학부 통신 및 신호처리연구실)
  • Published : 2007.11.30

Abstract

This Paper Proposes a new optimization algorithm named by GBNSGA-II(Goal-pareto Based Non-dominated Sorting Genetic Algorithm-II) which uses Goal Programming to find non-dominated solutions in NSGA-II. Although the conventional NSGA is very popular to solve multiobjective optimization problem, its high computational complexity, lack of elitism and difficulty of selecting sharing parameter have been considered as problems to be overcome. To overcome these problems, NSGA-II has been introduced as the alternative for multiobjective optimization algorithm preventing aforementioned defects arising in the conventional NSGA. Together with advantageous features of NSGA-II, this paper proposes rather effective optimization algorithm formulated by purposely combining NSGA-II algorithm with GP (Goal Programming) subject to satisfying multiple objectives as possible as it can. By conducting computer simulations, the superiority of the proposed GBNSGA-II algorithm will be verified in the aspects of the effectiveness on optimization process in presence of a priori constrained goals and its fast converging capability.

NSGA (Non-dominated Sorting Algorithm) 는 다목적 최적화 분야에서 널리 사용되고 있는 비지배 정렬 기반의 유전자 알고리즘으로 최적화를 요구하는 분야에서 널리 사용되고 있다. 하지만 연산의 복잡도, 사전 우수해 선별 조건의 미흡함과 공유 변수값 결정의 어려움등이 문제로 제기 되었고, 이러한 단점을 보완한 NSGA-II(Non-dominated Sorting Algorithm-B) 알고리즘이 제안되었다. 그러나 기존의 NSGA-II알고리즘은 다목적 최적화 알고리즘과 동일하게 목적치를 최대화 또는 최소화시키는 방향으로 최적화가 진행되어 선택적인 최적화 수행이 어렵다. 이러한 문제점을 보완하기 위하여 본 논문에서는 NSGA-II알고리즘이 가지는 장점을 바탕으로 설계자의 요구조건에 종속적으로 최적화 과정을 수행할 수 있는 GBNSGA-II (Goal-pareto Based NSGA-II)를 제안하고 기존의 NSGA-II알고리즘과 비교를 통해 성능의 우수성을 검증하였다.

Keywords

References

  1. A. Osyczka, 'Multicriteria optimization for engineering design,' Design Optimization (J.S. Gero, ed.), pp. 193-227, Academic Press, 1985
  2. J. Andersson, 'A survey of multiobjective optimization in engineering design,' Technical report LiTH-IKP-R-1097, Dept. of Mechanical Engg., Linkping Univ., Linkping, Sweden, 2000
  3. J. M. III, Cognitive radio : An Integrated Agent Architecture for Software Defined Radio, Ph. D. Thesis, Royal Institute of Tech., Sweden, May 2000
  4. C. J. Rieser, Biologically Inspired Cognitive Radio Engine Model Utilizing Distributed Genetic Algorithms for Secure and Robust Wireless Communications and Networking, Ph. D. Dissertation, Virginia Tech., Blaksburg, Aug. 2004
  5. T. W. Rondeau, C. J. Rieser, and C. W. Bostian, 'Cognitive radios with genetic algorithms : intelligent control of software defined radios,' Proc. SDR Forum Technical Conference, Phoenix, pp. C-3 - C-8, Nov. 2004
  6. K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan, 'A Fast Elitist Multiobjective Genetic Algorithm: NSGA-II,' IEEE Transactions on Evolutionary Computation, vol. 6, No.2 pp.182-197, APRIL 2002 https://doi.org/10.1109/4235.996017
  7. E. Zitzler, Evolutionary algorithms for multiobjective optimization : Methods and applications, Ph. D. Dissertation, Swiss Federal Inst. Tech. (ETH), Zurich, Switzerland, 1999
  8. D. F. Jones, S. K. Mirrazavi, and M. Tamiz, 'Multiobjective meta-heuristics : an overview of the current state-of-the-art,' European Journal of operational research, vol. 137, no. 1, pp. 1-9, 2002 https://doi.org/10.1016/S0377-2217(01)00123-0