DOI QR코드

DOI QR Code

Nematicidal Activity of Bikaverin and Fusaric Acid Isolated from Fusarium oxysporum against Pine Wood Nematode, Bursaphelenchus xylophilus

  • Kwon, Hyeok-Ran (Department of Agricultural Chemistry, College of Agricultural and Life Sciences, Chungnam National University) ;
  • Son, Seung-Wan (Bio-Control Research Team, Korea Research Institute of Chemical Technology) ;
  • Han, Hye-Rim (Division of Forest Diseases and Insect Pests, Korea Forest Research Institute) ;
  • Choi, Gyung-Ja (Bio-Control Research Team, Korea Research Institute of Chemical Technology) ;
  • Jang, Kyoung-Soo (Bio-Control Research Team, Korea Research Institute of Chemical Technology) ;
  • Choi, Yong-Ho (Bio-Control Research Team, Korea Research Institute of Chemical Technology) ;
  • Lee, Sunog (Bio-Control Research Team, Korea Research Institute of Chemical Technology) ;
  • Sung, Nack-Do (Department of Agricultural Chemistry, College of Agricultural and Life Sciences, Chungnam National University) ;
  • Kim, Jin-Cheol (Bio-Control Research Team, Korea Research Institute of Chemical Technology)
  • Published : 2007.12.31

Abstract

Pine wood nematode, Bursaphelenchus xylophilus, causes pine wilt disease in a number of Pinus species, which is one of the most serious plant diseases in forest, Korea. In the course of a search for nematicidal substances from endophytic fungi, Fusarium oxysporum EF119 out of the 23 fungal strains tested showed the strongest activity to B. xylophilus. Two nematicidal substances were isolated and identified as bikaverin and fusaric acid. Fusaric acid showed somewhat higher nematicidal activity against B. xylophilus than bikaverin; fusaric acid and bikaverin, at $100{\mu}g/ml$, killed B. xylophilus with mortality values of 50% and 43%, respectively. In addition, both compounds acted synergistically. This is the first report on the nematicidal activity of bikaverin and fusaric acid.

Keywords

References

  1. Abraham, W.-R. and Hanssen, H.-P. 1992. Fusoxysporone - a new type of diterpene from Fusarium oxysporum. Tetrahedron 48: 10559-10562 https://doi.org/10.1016/S0040-4020(01)88352-6
  2. Bacon, C. W., Porter, J. K. and Norred, W. P. 1995. Toxic interaction of fumonisin B, and fusaric acid measured by injection into fertile chicken egg. Mycopathologia 129:29-35 https://doi.org/10.1007/BF01139334
  3. Balan, J., Fusha, J., Kuhr, I. and Kuhrova, V. 1970. Bikaverin, an antibiotic from Gibberella fujikuroi, effective against Leishmania brasiliensis. Folia Microbiol. 15:479-484 https://doi.org/10.1007/BF02880192
  4. Bills, G. F. 1996. Isolation and analysis of endophytic fungal communities from woody plants. In: Systematics, ecology and evolution of endophytic fungi in grasses and woody plants. ed. by S. Redlin and L. M. Carris, pp. 31-65. APS Press, St. Paul, MN,USA
  5. Carroll, G. C. 1988. Fungal endophytes in stems and leaves: from latent pathogen to mutualistic symbiont. Ecology 69:2-9 https://doi.org/10.2307/1943154
  6. Chawla, M. L. and Prasad, S. K. 1975. Techniques in nematology. II. Comparative efficiency of sampling tools and nematode extraction methods. Indian J. Nematol. 4: 115-123
  7. Cho, J. Y., Choi, G. J., Lee, S.-W., Lim, H. K., Jang, K. S., Lim, C. H., Cho, K. Y. and Kim, J.-C. 2006. In vivo antifungal activity against various plant pathogenic fungi of curcuminoids isolated from the rhizomes of Curcuma longa. Plant Pathol. J. 22:94-96 https://doi.org/10.5423/PPJ.2006.22.1.094
  8. Chung, Y. J. 2002. Occurrence and spread of pine wilt disease in Korea. Korea Tree Prot. 7: 1-7
  9. Cornforth, J. W., Ryback, G., Robinson, P. M. and Park, D. 1971. Isolation and characterization of a fungal vacuolation factor (bikaverin). J. Chem. Soc. 2786-2788 https://doi.org/10.1039/j19710002786
  10. Dowd, P. F. 1988. Toxicological and biochemical interactions of the fungal metabolites fusaric acid and kojic aicd with xenobiotics in Heliothis zea (F) and Spodoptera frugiperda (J.E. Smith). Pestic. Biochem. Physiol. 32: 123-134 https://doi.org/10.1016/0048-3575(88)90005-3
  11. Fuska, J., Proksa, B. and Fuskova, A. 1975. New potential cytotoxic and antitumor substances. I. In vitro effect of bikaverin and its derivatives on cells of certain tumors. Neoplasma 22:335-339
  12. Hajime, K., Tajuya, A. and Nobuo, O. 2001. Pine wilt disease caused by the pine wood nematode: the induced resistance of pine trees by the avirulent isolates of nematode. Eur. J. Plant Pathol. 107:667-675 https://doi.org/10.1023/A:1011954828685
  13. Hidaka, H., Nagatsu, T. and Takeya, K. 1969. Fusaric acid, a hypotensive agent produced by fungi. J. Antibiot. 22:228-230 https://doi.org/10.7164/antibiotics.22.228
  14. Jain, M. 1982. Handbook of Enzyme Inhibitors, pp. 1966-1967. New York: John Wiley & Sons
  15. Kim, H.-Y., Choi, G. J., Lee, H. B., Lee, S.-W., Lim, H. K., Jang, K. S., Son, S. W., Lee, S. O., Cho, K. Y., Sung, N. D. and Kim, J.-C. 2007. Some fungal endophytes from vegetable crops and their anti-oomycete acivities against tomato late blight. Lett. Appl. Microbiol. 44:332-337 https://doi.org/10.1111/j.1472-765X.2006.02093.x
  16. Kitagawa, A., Sugihara, Y., Okumura, M., Kawai, K. and Hamasaki, T. 1997. Reexamination of respiration-impairing effect of bikaverin on isolated mitochondria. Cereal Res. Commun.25:451-452
  17. Kjaer, D., Kjaer, A., Pederson, C. Bulock, J. D. and Smith, J. R. 1971. Bikaverin and norbikaverin, benzoxanthentrione pigments of Gibberella fujikuroi. J. Chem. Soc. 2792-2797
  18. Mamiya, Y. and Kiyohara, T. 1972. Description of Bursaphelenchus lignicolus n sp. (Nematoda: Aphelenchoididae) from pine wood and histopathology of nematode-infested trees. Nematologica 18:120-124 https://doi.org/10.1163/187529272X00296
  19. May, H. D., Wu, Q. and Blake, C. K. 2000. Effects of the Fusarium spp. mycotoxins fusaric acid and deoxynivalenol on the growth of Ruminococcus albus and Methanobrevibacter ruminantium. Can. J. Microbiol. 46:692-69 https://doi.org/10.1139/cjm-46-8-692
  20. Smith, T. K. and Sousadias, M. G. 1993. Fusaric acid content of swine feedstuffs. J. Agric. Food Chem. 41:2296-2298 https://doi.org/10.1021/jf00036a014
  21. Son, S. W., Kim, H.-Y., Choi, G. J., Lim, H. K., Jang, K. S., Lee, S. O., Lee, S., Sung, N. D. and Kim, J.-C. 2007. Bikaverin and fusaric acid from Fusarium oxysporum show anti-oomycete activity against Phytophthora infestnas. J. Appl. Microbiol. DOI:10.111/j.l365-2672.2007.03581
  22. Stierle, A., Strobel, G. A. and Stierle, D. 1993. Taxol and taxane production by Taxomyces andreanae, an endophytic fungus of Pacific yew. Science 260:214-216 https://doi.org/10.1126/science.8097061
  23. Strobel, G. A. and Long, D. M. 1998. Endophytic microbes embody pharmaceutical potential. ASM News 64:263-268
  24. Tan, R. X. and Zou, W. X. 2001. Endophytes: a rich source of functional metabolites. Nat. Prod. Rep. 18:448-459 https://doi.org/10.1039/b100918o
  25. Tokushige, Y. and Kiyohara, T. 1969. Bursaphelenchus sp. in the wood of dead pine trees. J. Jap. Forest Soc. 51:193-195
  26. Tokushige, Y. and Kiyohara, T. 1971. Inoculation experiments of a nematode, Bursaphelenchus sp., onto pine trees. J. Jap. Forest Soc. 53:210-218
  27. Viglierchio, D. R. and Schimit, R. V. 1983. On the methodology of nematode extraction from field samples: Baerman funnel modifications. J. Nematol. 15:438-444
  28. Woo, K.-S.; Kim, Y.-S.; Koo, Y.-B.; Yeo, J.-K. and Moon, Y.-S. 2007. Variation in susceptibility of pine species seedlings with the pine wood nematode, Bursaphelenchus xylophilus, in greenhouse. Plant Pathol. J. 23:70-75 https://doi.org/10.5423/PPJ.2007.23.2.070
  29. Yi, C. K., Byun, B. H., Park, J. D., Yang, S. I. and Chang, K. H. 1989. First finding of the pine wood nematode, Bursaphelenchus xylophilus (Steiner et Buhrer) Nickle and its insect vector in Korea. Res. Rep. Forestry Res. Ins. 38:141-149
  30. Wiyakrutta, S., Sriubolmas, N., Panphut, W., Thongon, N., Danwisetkanjana, K., Ruangrungsi, N. and Meevootisom, V. 2004. Endophytic fungi with anti-microbial, anti-cancer and antimalarial activities isolated from Thai medicinal plants. World J. Microbiol. Biotechnol. 20:265-272 https://doi.org/10.1023/B:WIBI.0000023832.27679.a8

Cited by

  1. Bioactive secondary metabolites with multiple activities from a fungal endophyte vol.10, pp.1, 2017, https://doi.org/10.1111/1751-7915.12467
  2. Fusarium agapanthi sp. nov., a novel bikaverin and fusarubin-producing leaf and stem spot pathogen of Agapanthus praecox (African lily) from Australia and Italy vol.108, pp.5, 2016, https://doi.org/10.3852/15-333
  3. Biosynthesis of the red pigment bikaverin inFusarium fujikuroi: genes, their function and regulation vol.72, pp.4, 2009, https://doi.org/10.1111/j.1365-2958.2009.06695.x
  4. Occurrence ofBursaphelenchus mucronatus(Nematoda: Aphelenchoididae) and the microhabitat distribution of fungi in declining pine trees in a locale in Korea vol.44, pp.3, 2014, https://doi.org/10.1111/1748-5967.12054
  5. Endophytic fungi as novel sources of biopesticides: the Macaronesian Laurel forest, a case study 2017, https://doi.org/10.1007/s11101-017-9514-4
  6. Nematicidal Effect of Root-Knot Nematode (Meloidogyne incognita) by Amino Acids Biochemical Agent Extracted from Chicken Feather vol.55, pp.4, 2012, https://doi.org/10.3839/jabc.2012.039
  7. Repeated loss of an anciently horizontally transferred gene cluster in Botrytis vol.105, pp.5, 2013, https://doi.org/10.3852/12-390
  8. LC-MS/MS method for the determination of the fungal pigment bikaverin in maize kernels as an indicator of ear rot vol.29, pp.11, 2012, https://doi.org/10.1080/19440049.2012.704528
  9. Production of bikaverin by a Fusarium fujikuroi mutant in submerged cultures vol.6, pp.1, 2016, https://doi.org/10.1186/s13568-016-0205-0
  10. Neuroprotective Effects of Bikaverin on H2O2-Induced Oxidative Stress Mediated Neuronal Damage in SH-SY5Y Cell Line vol.34, pp.7, 2014, https://doi.org/10.1007/s10571-014-0073-6
  11. Bikaverin production and applications vol.87, pp.1, 2010, https://doi.org/10.1007/s00253-010-2551-1
  12. Nematicidal activity of Auxarthron reticulatum DY-2 against the pine wood nematode Bursaphelenchus mucronatus vol.16, pp.4, 2014, https://doi.org/10.1163/15685411-00002775
  13. GAC1, a gene encoding a putative GTPase-activating protein, regulates bikaverin biosynthesis in Fusarium verticillioides vol.100, pp.5, 2008, https://doi.org/10.3852/08-015
  14. Immunohistochemical analysis of cell wall hydroxyproline-rich glycoproteins in the roots of resistant and susceptible wax gourd cultivars in response to Fusarium oxysporum f. sp. Benincasae infection and fusaric acid treatment vol.30, pp.8, 2011, https://doi.org/10.1007/s00299-011-1069-z
  15. Nematicidal and Reproduction Supression Activity of Actinomyces Isolates against Pine Wood Nematode, Bursaphelenchus xylophilus vol.19, pp.2, 2015, https://doi.org/10.7585/kjps.2015.19.2.141
  16. DMSO-mediated transformation of 3-amino-2-hydroxynaphthazarins to natural 2,3-dihydroxynaphthazarins and related compounds vol.57, pp.30, 2016, https://doi.org/10.1016/j.tetlet.2016.06.056
  17. Biological Control of Root-knot Nematode by Streptomyces sampsonii KK1024 vol.44, pp.6, 2011, https://doi.org/10.7745/KJSSF.2011.44.6.1150
  18. Conserved Responses in a War of Small Molecules between a Plant-Pathogenic Bacterium and Fungi vol.9, pp.3, 2018, https://doi.org/10.1128/mBio.00820-18