DOI QR코드

DOI QR Code

Analysis of Symptom Determinant of Cucumber mosaic virus RNA3 via Pseudorecombinant Virus in Zucchini Squash

  • Choi, Seung-Kook (National Institute of Agricultural Biotechnology, RDA) ;
  • Yoon, Ju-Yeon (College of Life Science, Korea University) ;
  • Choi, Jang-Kyung (Department of Agricultural Biology, Kangwon National University) ;
  • Kim, Kook-Hyung (Department of Agricultural Biotechnology, Seoul National University) ;
  • Sohn, Seong-Han (National Institute of Agricultural Biotechnology, RDA)
  • 발행 : 2007.12.31

초록

Isolates of Cucumber mosaic virus (CMV) collected in Korea, were compared with their pathological features in tobacco and zucchini squash. Full-length cDNA clone of RNA3 was generated by using long-distance RT-PCR. Transcript RNA3 from the cDNA clone was inoculated onto host plants with transcripts RNA1 and RNA2 of Fny strain, generating RNA3-pseudorecombinant CMV. Timing and severity of systemic symptom was not significantly different among the pseudorecombinant CMVs in tobacco, compared with strains Fny-CMV and Pf-CMV. However, the pseudorecombinant CMVs induced two different systemic symptoms (mosaic vs. chlorotic spot) in zucchini squash. Based on symptom induction, the pseudorecombinant CMVs were categorized into two classes. The severity and timing of symptoms were correlated with viral RNA accumulations in systemic leaves of zucchini squash, suggesting that different kinetics of virus movement associated with CMV proteins are crucial for systemic infection and symptom development in zucchini squash. The analysis of movement proteins (MP) of CMV strains showed high sequence homology, but the differences of several amino acids were found in the C-terminal region between Class-I-CMV and Class-II-CMV. The analysis of coat proteins (CP) showed that the CMV isolates tested belonged to CMV subgroup I and the viruses shared overall 87-99% sequence identity in their genomes. Phylogenetic analysis of MP and CP suggested that biological properties of Korean CMV isolates have relationships associated with host species.

키워드

참고문헌

  1. Blackman, M. L., Boevink, P., Santa Cruz, S., Palukaitis, P. and Oparka, K. J. 1998. The movement protein of cucumber mosaic virus traffics into sieve elements in minor veins of Nicotiana clevelandii. Plant Cell 10:525-537 https://doi.org/10.1105/tpc.10.4.525
  2. Canto, T. and Palukaitis, P. 1999. The hypersensitive response to Cucumber mosaic virus in Chenopodium amaranticolor requires virus movement outside the initially infected cell. Virology 265:74-82 https://doi.org/10.1006/viro.1999.0028
  3. Canto, T., Prior, D. A. M., Hellwald, K.-H., Oparka, K. J. and Palukaitis, P. 1997. Characterization of cucumber mosaic virus. IV. Movement protein and coat protein are both essential for cell-to-cell movement of cucumber mosaic virus. Virology 237:237-248 https://doi.org/10.1006/viro.1997.8804
  4. Choi, J. K., Kim, H. J., Hong, J. S., Kim, D. W. and Lee, S. Y. 1998. Identification and differentiation of cucumber mosaic virus isolates in Korea. Kor. J. Plant Pathol. 14:7-12
  5. Choi, S. K., Ahn, H. I., Kim, M. J., Choi, J. K. and Ryu, K. H. 2004. Symptom determinants as RNA3 of lily isolates of cucumber mosaic virus on zucchini squash. Plant Pathol. J. 20:212-219 https://doi.org/10.5423/PPJ.2004.20.3.212
  6. Choi, S. K., Choi, J. K., Park, W. M. and Ryu, K. H. 1999. RTPCR detection and identification of three species of cucumoviruses with a genus-specific single pair of primers. J. Virol. Methods 83:67-73 https://doi.org/10.1016/S0166-0934(99)00106-8
  7. Choi, S. K., Choi, J. K. and Ryu, K. H. 2003a. Involvement of RNA2 for systemic infection of Cucumber mosaic virus isolated from lily on zucchini squash. Virus Res. 97: 1-6 https://doi.org/10.1016/S0168-1702(03)00215-6
  8. Choi, S. K., Choi, S. H., Yoon, J. Y., Choi, J. K. and Ryu, K. H. 2003b. A subpopulation of RNA3 of cucumber mosaic virus quasispecies. Plant Pathol. J. 19:210-216 https://doi.org/10.5423/PPJ.2003.19.4.210
  9. Choi, S. K., Yoon, J. Y, Ryu, K. H., Choi, J. K., Pa1ukaitis, P. and Park, W. M. 2002. Systemic movement of a movement-deficient strain of Cucumber mosaic virus in zucchini squash is facilitated by a cucurbitinfecting potyvirus. J. Gen. Virol. 83:3173-3178 https://doi.org/10.1099/0022-1317-83-12-3173
  10. Choi, S. K., Palukatis, P., Min, B. E., Lee, M. Y., Choi, J. K. and Ryu, K. H. 2005. Cucumber mosaic virus 2a polymerase and 3a movement proteins independently affect both virus movement and the timing of symptom development in zucchini squash. J. Gen. Virol. 86:1213-1222 https://doi.org/10.1099/vir.0.80744-0
  11. Hayes, R. J. and Buck, K. W. 1990. Complete replication of a eukaryotic virus RNA in vitro by a purified RNA-dependent RNA polymerase. Cell 63:363-368 https://doi.org/10.1016/0092-8674(90)90169-F
  12. Hull, R. 2002. Matthews' Plant Virology, 4th. ed. San Diego; Academic Press, USA
  13. Huppert, E., Szilassy, D., Salanki, K., Diveki, Z. and Balazs, E. 2002. Heterologous movement protein strongly modifies the infection phenotype of cucumber mosaic virus. J Virol. 76:3554-3557 https://doi.org/10.1128/JVI.76.7.3554-3557.2002
  14. Gal-On, A., Kaplan, J., Roossinck, M. J. and Palukaitis, P. 1994. The kinetics of infection of zucchini squash by cucumber mosaic virus indicates a function for RNA1 in virus movement. Virology 205:280-289 https://doi.org/10.1006/viro.1994.1644
  15. Gal-On, A, Kaplan, J. and Palukaitis, P 1996. Characterization of cucumber mosaic virus. ∐. Identification of movement protein sequences that influence accumulation and systemic infection in tobacco. Virology 226:354-361 https://doi.org/10.1006/viro.1996.0663
  16. Hwang, M. S., Kim, S. H., Lee, J. H., Bae, J. M., Paek, K H. and Park, Y. I. 2005. Evidence for interaction between the 2a polymerase protein and the 3a movement protein of Cucumber mosaic virus. J. Gen. Virol. 86:3171-3177 https://doi.org/10.1099/vir.0.81139-0
  17. Kaplan, I. B., Gal-on, A and Palukaitis, P. 1997. Characterization of cucumber mosaic virus. III. Localization of sequences in the movement protein controlling systemic infection in cucurbits. Virology 230:343-349 https://doi.org/10.1006/viro.1997.8468
  18. Kim, C. H. and Palukaitis, P. 1997. The plant defense response to cucumber mosaic virus in cowpea is elicited by the viral polymerase gene and affects virus accumulation in single cells. EMBO J. 16:4060-4068 https://doi.org/10.1093/emboj/16.13.4060
  19. Li, Q., Ryu, K. H. and Palukaitis, P. 2001. Cucumber mosaic virus-plant interactions: identification of 3a protein sequences affecting infectivity, cell-to-cell movement, and long-distance movement. Mol. Plant-Microbe Interact. 14:378-385 https://doi.org/10.1094/MPMI.2001.14.3.378
  20. Nagano, H. T., Mise, K, Furusawa, I. and Okuno, T. 2001. Conversion in the requirement of coat protein in cell-to-cell movement mediated by the cucumber mosaic virus movement protein. J. Virol 75:8045-8053 https://doi.org/10.1128/JVI.75.17.8045-8053.2001
  21. O'Reilly, E. K., Wang, Z., French, R. and Kao, C. C. 1998. Interactions between the structural domains of the RNA replication proteins of plant-infecting RNA viruses. J. Virol. 72:7160-7169
  22. Palukaitis, P. and Garcia-Arenal, F. 2003. Cucumoviruses. Adv. Virus. Res. 62:241-323 https://doi.org/10.1016/S0065-3527(03)62005-1
  23. Palukaitis, P., Roossinck, M. J., Dietzgen, R. G. and Francki, R. I. B. 1992. Cucumber mosaic virus. Adv. Virus Res. 41:281-348 https://doi.org/10.1016/S0065-3527(08)60039-1
  24. Peden, K. W. C. and Symons, R. H. 1973. Cucumber mosaic virus contains a functionally divided genome. Virology 53:487-492 https://doi.org/10.1016/0042-6822(73)90232-8
  25. Rao, A. L. N. and Francki, R. I. B. 1982. Distribution of determinants for symptom production and host range in the three RNA components of cucumber mosaic virus. J. Gen. Virol. 61:197-205 https://doi.org/10.1099/0022-1317-61-2-197
  26. Rizzo, T. M. and Palukaitis, P. 1990. Construction of full-length cDNA clones of cucumber mosaic virus RNAs 1, 2 and 3: generation of infectious RNA transcripts. Mol. Gen. Genet. 222:249-256 https://doi.org/10.1007/BF00633825
  27. Roossinck, M. J. and Palukaitis, P. 1990. Rapid induction and severity of symptoms in zucchini squash (Cucurbita pepo) map to RNA1 of cucumber mosaic virus. Mol. Plant-Microbe Interact. 3: 188-192 https://doi.org/10.1094/MPMI-3-188
  28. Ryu, K. H., Kim, C. H. and Palukaitis, P. 1998. The coat protein of cucumber mosaic virus is a host range determinant for infection of maize. Mol. Plant-Microbe Interact. 11:351-357 https://doi.org/10.1094/MPMI.1998.11.5.351
  29. Saitoh, H., Fujiwara, M., Ohki, S. T. and Osaki, T. 1999. The coat protein gene is essential for the systemic infection of cucumber mosaic virus in Cucumis figarei at a high temperature. Ann. Phytopathol. Soc. Jpn. 65:248-253 https://doi.org/10.3186/jjphytopath.65.248
  30. Sambrook, J., Fritsch, E. F. and Maniatis, T. 1989. Molecular cloning. A laboratory Manual. Cold Spring Harbor, NY: Cold. Spring Harbor Laboratory
  31. Sanchez-Navarro, J. A., Herranz, M. C. and Pallas, V. 2006. Cellto-cell movement of Alfalfa mosaic virus can be mediated by the movement proteins of Ilar-, bromo-, cucumo-, tobamoand comoviruses and does not require virion formation. Virology 346:66-73 https://doi.org/10.1016/j.virol.2005.10.024
  32. Sanger, F., Niklen, S. and Colson, A. R. 1977. DNA sequencing with chain-terminating inhibitors. Proc. Natl. Acad. Sci. USA 74:5463-5467
  33. Scholthof, H. B. 2005. Plant virus transport: motions of functional equivalence. Trends Plant Sci. 10:376-382 https://doi.org/10.1016/j.tplants.2005.07.002
  34. Shintaku, M. H., Zhang, L. and Palukaitis, P. 1992. A single amino acid substitution in the coat protein of cucumber mosaic virus induces chlorosis in tobacco. Plant Cell 4:751-757 https://doi.org/10.1105/tpc.4.7.751
  35. Suzuki, M., Kuwata, S., Masuta, C. and Takanami, Y. 1995. Point mutations in the coat protein of cucumber mosaic virus affect symptom expression and virion accumulation in tobacco. J. Gen Virol. 76:1791-1719 https://doi.org/10.1099/0022-1317-76-7-1791
  36. Szilassy, D., Salanki, K. and Balazs, E. 1999. Stunting induced by cucumber mosaic cucumovirus-infected Nicotiana glutinosa is determined by a single amino acid residue in the coat protein. Mol. Plant Microbe Interact. 12:1105-1113 https://doi.org/10.1094/MPMI.1999.12.12.1105
  37. Taliansky, M. E. and Garcia-Arenal, F. 1995. Role of cucumovirus capsid protein in long-distance movement within the infected plant J. Virol. 69:916-922
  38. Takeshita, M., Suzuki, M., Kuwata, S. and Takanami, Y. 1998. Involvement of cucumber mosaic cucumovirus RNA2 and RNA3 in viral systemic spread in radish plant. Arch. Virol. 143:1109-1117 https://doi.org/10.1007/s007050050359
  39. Takeshita, M., Suzuki, M. and Takanami, Y. 2001. Combination of amino acids in the 3a protein and the coat protein of cucumber mosaic virus determines symptom expression and viral spread in bottle gourd. Arch. Virol. 146:697-711 https://doi.org/10.1007/s007050170140
  40. Waigmann, E., Deki, S., Trutnyeva, K. and Citovsky, V. 2004. The ins and outs of nondestructive cell-to-cell and systemic movement of plant viruses. Crit. Rev. Plant Sci. 23: 195-250 https://doi.org/10.1080/07352680490452807
  41. Wong, S. M., Thio, S. S. C., Shintaku, M. H. and Palukaitis, P. 1999. The rate of cell-to-cell movement in squash of cucumber mosaic virus is affected by sequences of the capsid protein. Mol. Plant-Microbe Interact. 12:628-632 https://doi.org/10.1094/MPMI.1999.12.7.628
  42. Zhang, L., Hanada, K. and Palukaitis, P. 1994. Mapping local and systemic symptom determinants of cucumber mosaic cucumovirus in tobacco. J. Gen. Virol. 75:3185-3191 https://doi.org/10.1099/0022-1317-75-11-3185

피인용 문헌

  1. Characterization of a Novel Cucumber mosaic virus Isolated from Petunia hybrida vol.28, pp.3, 2012, https://doi.org/10.5423/PPJ.NT.04.2012.0050
  2. Outbreak of Cucumber mosaic virus and Tomato spotted wilt virus on Bell Pepper Grown in Jeonnam Province in Korea vol.24, pp.1, 2008, https://doi.org/10.5423/PPJ.2008.24.1.093