References
- Bertolla, F., Frostegard, A., Brito, B., Nesme, X. and Simonet, P. 1999. During infection of its host, the plant pathogen Ralstonia solanacearum naturally develops a state of competence and exchanges genetic material. Mol. Plant-Microbe Interact. 12:467-472 https://doi.org/10.1094/MPMI.1999.12.5.467
- Boucher, C. A., Barberis, P., Trigalet, A. P. and Demery, D. A. 1985. Transposon mutagenesis of Pseudomonas solanacearum: isolation of Tn5-induced avirulent mutants. J. Gen. Microbiol. 131:2449-2457
- Ciampi, L. and Sequeira, L. 1980. Influence of temperature on virulence of race 3 strains of Pseudomonas solanacearum. Am. Potato J. 57:307-317 https://doi.org/10.1007/BF02854025
- Dan, Y., Yan, H., Munyikwa, T., Dong, J., Zhang, Y. and Armstrong, C. L. 2006. MicroTom-a high-throughput model transformation system for functional genomics. Plant Cell Rep. 25:432-441 https://doi.org/10.1007/s00299-005-0084-3
- Hayward, A. C. 1991. Biology and epidemiology of bacterial wilt caused by Pseudomonas solanacearum. Annu. Rev. Phytopathol. 29:65-87 https://doi.org/10.1146/annurev.py.29.090191.000433
- Hayward, A. C. 1994. Systematics and phylogeny of Pseudomonas solanacearum and related bacteria. In: Bacterial Wilt: the Disease and its Causative Agent Pseudomonas solanacearum. ed. By A. C. Hayward, and G L. Hartman, P. 127-135. CAB International, Oxford, UK
- Izawa, T. and Shimamoto, K 1996. Becoming a model plant: the importance of rice to plant science. Trends Plant Sci. 1 :95-99 https://doi.org/10.1016/S1360-1385(96)80041-0
- Jeong, Y., Kim, J., Kang, Y., Lee, S. and Hwang, I. 2007. Genetic diversity and distribution of Korean isolates of Ralstonia solanacearum. Plant Dis. 91:1277-1287 https://doi.org/10.1094/PDIS-91-10-1277
- Kang, Y-G., Chung, Y-H. and Yu, Y-H. 2004. Relationship between the population of Ralstonia solanacearum in soil and the incidence of bacterial wilt in the naturally infested tobacco fields. Plant Pathol. J. 20:289-292 https://doi.org/10.5423/PPJ.2004.20.4.289
- Keane, P. J., Kerr, A. and New, P. B. 1970. Crown gall of stone fruit. II. Identification and nomenclature of Agrobacterium isolates. Aust. J. Biol. Sci. 23:585-595 https://doi.org/10.1071/BI9700585
- Kelman, A. 1954. The relationship of pathogenicity in Pseudomonas solanacearum to colony appearance on a tetrazolium medium. Phytopathology 44:693-695
- Leutwiler, L. S., Hough-Evans, B. R. and Meyerowitz, E. M. 1984. The DNA of Arabidopsis thaliana. Mol. Gen. Genet. 194:15-23 https://doi.org/10.1007/BF00383491
- McCormick, S., Niedmeyer, J., Fry, J., Barnason, A., Horsh, K and Fraley, R. 1986. Leaf disc transformation on cultivated tomato (L. esculentum) using Agrobacterium tumefaciens. Plant Cell Rep. 5:81-84 https://doi.org/10.1007/BF00269239
- Meissner, R., Jacobson, Y., Melame, S., Levyatuv, S., Shalev, G., Ashri, A., Elkind, Y. and Levy, A. 1997. A new model system for tomato genetics. Plant J. 12:1465-1472 https://doi.org/10.1046/j.1365-313x.1997.12061465.x
- Park, K., Paul, D., Kim, Y. K., Nam, K. W., Lee, Y. K., Choi, H. W. and Lee, S. Y. 2007. Induced systemic resistance by Bacillus vallismortis EXTN-1 suppressed bacterial wilt in tomato caused by Ralstonia solanacearum. Plant Pathol. J. 23:22-25 https://doi.org/10.5423/PPJ.2007.23.1.022
- Roberts, P. D., Denny, T. P. and Schell, M. A. 1988. Cloning of the egl genes of Pseudomonas solanacearum and analysis of its role in phytopathogenicity. J. Bacteriol. 170: 1445-1451 https://doi.org/10.1128/jb.170.4.1445-1451.1988
- Saile, E., McGarvey, J. A., Schell, M. A. and Denny, T. P. 1997. Role of extracellular polysaccharide and endoglucanase in root invasion and colonization of tomato plants by Ralstonia solanacearum. Phytopathology 87: 1264-1271 https://doi.org/10.1094/PHYTO.1997.87.12.1264
- Schaad, N. W., Jones, J. B. and Chun, W. 2001. Laboratory Guide for Identification of Plant Pathogenic Bacteria. 3rd ed. APS press, St. Paul, USA
- Schell, M. A. 2000. Control of virulence and pathogenicity genes of Ralstonia solanacearum by an elaborate sensory network. Annu. Rev. Phytopathol. 38:263-292 https://doi.org/10.1146/annurev.phyto.38.1.263
- Scott, J. W. and Harbaugh, B. K. 1989. MicroTom-a minature dwarf tomato. Fla. Agr. Exp. Sta. Circ. 370:1-6
- Sequeira, L. and Averre, C. W., III. 1961. Distribution and pathogenicity of strains of Pseudomonas solanacearum from virgin soils in Costa Rica. Plant Dis. Rep. 45:435-440
- Smith, J. J., Offord, L. C, Holderness, L. C., Holderness, M. and Saddler, G. G. 1995. Genetic diversity of Burkholderia solanacearum race 3 in Kenya. Appl. Environ. Microbiol. 61:4263-4268
- Sun, H-J., Uchii, S., Watanabe, S. and Ezura, H. 2006. A highly efficient transformation protocol for Micro-Tom, a model cultivar for tomato functional genomics. Plant Cell Physiol. 47:426-431 https://doi.org/10.1093/pcp/pci251
- Takahashi, H., Shimizu, A., Arie, T., Rosmalawati, S., Fukushima, S., Kikuchi, M., Hikichi, Y., Kanda, A., Takahashi, A., Kiba, A., Ohnishi, K., Ichinose, Y., Taguchi, F., Yasuda, C., Kodama, M., Egusa, M., Masuta, C., Sawada, H., Shibata, D., Hori, K. and Watanabe, Y. 2005. Catalog of Micro-Tom tomato responses to common fungal, bacterial, and viral pathogens. J. Gen. Plant Pathol. 71:8-322 https://doi.org/10.1007/s10327-004-0168-x
- Vasse, J., Frey, P. and Trigalet, A. 1995. Microscopic studies of intercellular infection and protoxylem invasions of tomato roots by Pseudomonas solanacearum. Mol. Plant-Microbe Interact. 8:241-251 https://doi.org/10.1094/MPMI-8-0241
- Wallis, F. M. and Truter, S. J. 1978. Histopathology of tomato plants infected with Pseudomonas solanacearum, with emphasis on ultrastructure. Physiol. Plant Pathol. 13:307-317 https://doi.org/10.1016/0048-4059(78)90047-4
Cited by
- Chemical Pesticides and Plant Essential Oils for Disease Control of Tomato Bacterial Wilt vol.28, pp.1, 2012, https://doi.org/10.5423/PPJ.OA.10.2011.0200
- Effect of acibenzolar-S-methyl andSaccharomyces cerevisiaeon the activation ofEucalyptusdefences against rust vol.38, pp.6, 2009, https://doi.org/10.1071/AP09045
- Molecular cloning and antimicrobial activity of bombolitin, a component of bumblebee Bombus ignitus venom vol.156, pp.3, 2010, https://doi.org/10.1016/j.cbpb.2010.03.007
- Resistance Evaluation of Tomato Germplasm against Bacterial Wilt by Ralstonia solanacearum vol.20, pp.4, 2014, https://doi.org/10.5423/RPD.2014.20.4.253
- Reduction of Bacterial Wilt Diseases with Eggplant Rootstock EG203-Grafted Tomatoes in the Field Trials vol.19, pp.2, 2013, https://doi.org/10.5423/RPD.2013.19.2.108
- Tomato cv. ‘Micro-Tom’ as a model system to study postharvest chilling tolerance vol.184, 2015, https://doi.org/10.1016/j.scienta.2014.12.020
- Potato soil-borne diseases. A review vol.32, pp.1, 2012, https://doi.org/10.1007/s13593-011-0035-z
- Disease Responses of Tomato Pure Lines Against Ralstonia solanacearum Strains from Korea and Susceptibility at High Temperature vol.17, pp.3, 2011, https://doi.org/10.5423/RPD.2011.17.3.326
- Loss of glutamate dehydrogenase in Ralstonia solanacearum alters dehydrogenase activity, extracellular polysaccharide production and bacterial virulence vol.90, 2015, https://doi.org/10.1016/j.pmpp.2015.03.003
- A novel pepper (Capsicum annuum) receptor-like kinase functions as a negative regulator of plant cell death via accumulation of superoxide anions vol.185, pp.3, 2010, https://doi.org/10.1111/j.1469-8137.2009.03095.x
- Development of an Efficient Screening System for Resistance of Tomato Cultivars to Ralstonia solanacearum vol.21, pp.4, 2015, https://doi.org/10.5423/RPD.2015.21.4.290
- Isolation and characterization of Ralstonia solanacearum strains causing bacterial wilt of potato in Nakuru County of Kenya vol.17, pp.52, 2018, https://doi.org/10.5897/AJB2018.16659