DOI QR코드

DOI QR Code

MicroTom - A Model Plant System to Study Bacterial Wilt by Ralstonia solanacearum

  • Published : 2007.12.31

Abstract

MicroTom is a miniature tomato plants with various properties that make it as a model system for experiments in plant molecular biology. To extend its utility as a model plant to study a plant - bacterial wilt system, we investigated the potential of the MicroTom as a host plant of bacterial wilt caused by Ralstonia solanacearum. We compared the disease progress on standard tomato and MicroTom by two inoculation methods, root dipping and soil drenching, using a race 1 strain GMI1000. Both methods caused the severe wilting on MicroTom comparable to commercial tomato plant, although initial disease development was faster in root dipping. From the diseased MicroTom plants, the same bacteria were successfully reisolated using semiselective media to fulfill Koch's postulates. Race specific and isolate specific virulence were investigated by root dipping with 10 isolates of R. solanacearum isolated from tomato and potato plants. All of the tested isolates caused the typical wilt symptom on MicroTom. Disease severities by isolates of race 3 was below 50 % until 15 days after inoculation, while those by isolates of race 1 reached over 50% to death until 15 days. This result suggested that MicroTom can be a model host plant to study R. solanacearum - plant interaction.

Keywords

References

  1. Bertolla, F., Frostegard, A., Brito, B., Nesme, X. and Simonet, P. 1999. During infection of its host, the plant pathogen Ralstonia solanacearum naturally develops a state of competence and exchanges genetic material. Mol. Plant-Microbe Interact. 12:467-472 https://doi.org/10.1094/MPMI.1999.12.5.467
  2. Boucher, C. A., Barberis, P., Trigalet, A. P. and Demery, D. A. 1985. Transposon mutagenesis of Pseudomonas solanacearum: isolation of Tn5-induced avirulent mutants. J. Gen. Microbiol. 131:2449-2457
  3. Ciampi, L. and Sequeira, L. 1980. Influence of temperature on virulence of race 3 strains of Pseudomonas solanacearum. Am. Potato J. 57:307-317 https://doi.org/10.1007/BF02854025
  4. Dan, Y., Yan, H., Munyikwa, T., Dong, J., Zhang, Y. and Armstrong, C. L. 2006. MicroTom-a high-throughput model transformation system for functional genomics. Plant Cell Rep. 25:432-441 https://doi.org/10.1007/s00299-005-0084-3
  5. Hayward, A. C. 1991. Biology and epidemiology of bacterial wilt caused by Pseudomonas solanacearum. Annu. Rev. Phytopathol. 29:65-87 https://doi.org/10.1146/annurev.py.29.090191.000433
  6. Hayward, A. C. 1994. Systematics and phylogeny of Pseudomonas solanacearum and related bacteria. In: Bacterial Wilt: the Disease and its Causative Agent Pseudomonas solanacearum. ed. By A. C. Hayward, and G L. Hartman, P. 127-135. CAB International, Oxford, UK
  7. Izawa, T. and Shimamoto, K 1996. Becoming a model plant: the importance of rice to plant science. Trends Plant Sci. 1 :95-99 https://doi.org/10.1016/S1360-1385(96)80041-0
  8. Jeong, Y., Kim, J., Kang, Y., Lee, S. and Hwang, I. 2007. Genetic diversity and distribution of Korean isolates of Ralstonia solanacearum. Plant Dis. 91:1277-1287 https://doi.org/10.1094/PDIS-91-10-1277
  9. Kang, Y-G., Chung, Y-H. and Yu, Y-H. 2004. Relationship between the population of Ralstonia solanacearum in soil and the incidence of bacterial wilt in the naturally infested tobacco fields. Plant Pathol. J. 20:289-292 https://doi.org/10.5423/PPJ.2004.20.4.289
  10. Keane, P. J., Kerr, A. and New, P. B. 1970. Crown gall of stone fruit. II. Identification and nomenclature of Agrobacterium isolates. Aust. J. Biol. Sci. 23:585-595 https://doi.org/10.1071/BI9700585
  11. Kelman, A. 1954. The relationship of pathogenicity in Pseudomonas solanacearum to colony appearance on a tetrazolium medium. Phytopathology 44:693-695
  12. Leutwiler, L. S., Hough-Evans, B. R. and Meyerowitz, E. M. 1984. The DNA of Arabidopsis thaliana. Mol. Gen. Genet. 194:15-23 https://doi.org/10.1007/BF00383491
  13. McCormick, S., Niedmeyer, J., Fry, J., Barnason, A., Horsh, K and Fraley, R. 1986. Leaf disc transformation on cultivated tomato (L. esculentum) using Agrobacterium tumefaciens. Plant Cell Rep. 5:81-84 https://doi.org/10.1007/BF00269239
  14. Meissner, R., Jacobson, Y., Melame, S., Levyatuv, S., Shalev, G., Ashri, A., Elkind, Y. and Levy, A. 1997. A new model system for tomato genetics. Plant J. 12:1465-1472 https://doi.org/10.1046/j.1365-313x.1997.12061465.x
  15. Park, K., Paul, D., Kim, Y. K., Nam, K. W., Lee, Y. K., Choi, H. W. and Lee, S. Y. 2007. Induced systemic resistance by Bacillus vallismortis EXTN-1 suppressed bacterial wilt in tomato caused by Ralstonia solanacearum. Plant Pathol. J. 23:22-25 https://doi.org/10.5423/PPJ.2007.23.1.022
  16. Roberts, P. D., Denny, T. P. and Schell, M. A. 1988. Cloning of the egl genes of Pseudomonas solanacearum and analysis of its role in phytopathogenicity. J. Bacteriol. 170: 1445-1451 https://doi.org/10.1128/jb.170.4.1445-1451.1988
  17. Saile, E., McGarvey, J. A., Schell, M. A. and Denny, T. P. 1997. Role of extracellular polysaccharide and endoglucanase in root invasion and colonization of tomato plants by Ralstonia solanacearum. Phytopathology 87: 1264-1271 https://doi.org/10.1094/PHYTO.1997.87.12.1264
  18. Schaad, N. W., Jones, J. B. and Chun, W. 2001. Laboratory Guide for Identification of Plant Pathogenic Bacteria. 3rd ed. APS press, St. Paul, USA
  19. Schell, M. A. 2000. Control of virulence and pathogenicity genes of Ralstonia solanacearum by an elaborate sensory network. Annu. Rev. Phytopathol. 38:263-292 https://doi.org/10.1146/annurev.phyto.38.1.263
  20. Scott, J. W. and Harbaugh, B. K. 1989. MicroTom-a minature dwarf tomato. Fla. Agr. Exp. Sta. Circ. 370:1-6
  21. Sequeira, L. and Averre, C. W., III. 1961. Distribution and pathogenicity of strains of Pseudomonas solanacearum from virgin soils in Costa Rica. Plant Dis. Rep. 45:435-440
  22. Smith, J. J., Offord, L. C, Holderness, L. C., Holderness, M. and Saddler, G. G. 1995. Genetic diversity of Burkholderia solanacearum race 3 in Kenya. Appl. Environ. Microbiol. 61:4263-4268
  23. Sun, H-J., Uchii, S., Watanabe, S. and Ezura, H. 2006. A highly efficient transformation protocol for Micro-Tom, a model cultivar for tomato functional genomics. Plant Cell Physiol. 47:426-431 https://doi.org/10.1093/pcp/pci251
  24. Takahashi, H., Shimizu, A., Arie, T., Rosmalawati, S., Fukushima, S., Kikuchi, M., Hikichi, Y., Kanda, A., Takahashi, A., Kiba, A., Ohnishi, K., Ichinose, Y., Taguchi, F., Yasuda, C., Kodama, M., Egusa, M., Masuta, C., Sawada, H., Shibata, D., Hori, K. and Watanabe, Y. 2005. Catalog of Micro-Tom tomato responses to common fungal, bacterial, and viral pathogens. J. Gen. Plant Pathol. 71:8-322 https://doi.org/10.1007/s10327-004-0168-x
  25. Vasse, J., Frey, P. and Trigalet, A. 1995. Microscopic studies of intercellular infection and protoxylem invasions of tomato roots by Pseudomonas solanacearum. Mol. Plant-Microbe Interact. 8:241-251 https://doi.org/10.1094/MPMI-8-0241
  26. Wallis, F. M. and Truter, S. J. 1978. Histopathology of tomato plants infected with Pseudomonas solanacearum, with emphasis on ultrastructure. Physiol. Plant Pathol. 13:307-317 https://doi.org/10.1016/0048-4059(78)90047-4

Cited by

  1. Chemical Pesticides and Plant Essential Oils for Disease Control of Tomato Bacterial Wilt vol.28, pp.1, 2012, https://doi.org/10.5423/PPJ.OA.10.2011.0200
  2. Effect of acibenzolar-S-methyl andSaccharomyces cerevisiaeon the activation ofEucalyptusdefences against rust vol.38, pp.6, 2009, https://doi.org/10.1071/AP09045
  3. Molecular cloning and antimicrobial activity of bombolitin, a component of bumblebee Bombus ignitus venom vol.156, pp.3, 2010, https://doi.org/10.1016/j.cbpb.2010.03.007
  4. Resistance Evaluation of Tomato Germplasm against Bacterial Wilt by Ralstonia solanacearum vol.20, pp.4, 2014, https://doi.org/10.5423/RPD.2014.20.4.253
  5. Reduction of Bacterial Wilt Diseases with Eggplant Rootstock EG203-Grafted Tomatoes in the Field Trials vol.19, pp.2, 2013, https://doi.org/10.5423/RPD.2013.19.2.108
  6. Tomato cv. ‘Micro-Tom’ as a model system to study postharvest chilling tolerance vol.184, 2015, https://doi.org/10.1016/j.scienta.2014.12.020
  7. Potato soil-borne diseases. A review vol.32, pp.1, 2012, https://doi.org/10.1007/s13593-011-0035-z
  8. Disease Responses of Tomato Pure Lines Against Ralstonia solanacearum Strains from Korea and Susceptibility at High Temperature vol.17, pp.3, 2011, https://doi.org/10.5423/RPD.2011.17.3.326
  9. Loss of glutamate dehydrogenase in Ralstonia solanacearum alters dehydrogenase activity, extracellular polysaccharide production and bacterial virulence vol.90, 2015, https://doi.org/10.1016/j.pmpp.2015.03.003
  10. A novel pepper (Capsicum annuum) receptor-like kinase functions as a negative regulator of plant cell death via accumulation of superoxide anions vol.185, pp.3, 2010, https://doi.org/10.1111/j.1469-8137.2009.03095.x
  11. Development of an Efficient Screening System for Resistance of Tomato Cultivars to Ralstonia solanacearum vol.21, pp.4, 2015, https://doi.org/10.5423/RPD.2015.21.4.290
  12. Isolation and characterization of Ralstonia solanacearum strains causing bacterial wilt of potato in Nakuru County of Kenya vol.17, pp.52, 2018, https://doi.org/10.5897/AJB2018.16659