References
- W. N. Bailey, Generalized Hypergeometric series, Cambridge Tracts in Mathematics and Mathematical Physics, No. 32, Stechert-Hafner, Inc., New York 1964
- H. Exton, Hypergeometric functions of three variables, J. Indian Acad. Math. 4 (1982), no. 2, 113-119
-
Y. S. Kim, J. Choi, and A. K. Rathie, Remark on two results by Padmanabham for Exton's triple hypergeometric series
$X_8$ , Honam Math. J. 27 (2005), no. 4, 603-608 -
Y. S. Kim, J. Choi, and A. K. Rathie, Another method for Padmanabham's transformation formula for Exton's triple hypergeometric series
$X_8$ , submitted, Indian J. appl. Math -
J. L. Lavoie, F. Grondin, and A. K. Rathie, Generalizatons of Watson's theorem on the sum of a
$_3F_2$ , Indian J. Math. 34 (1992), no. 2, 23-32 - E. D. Rainville, Special functions, The Macmillan company, New York, 1960
- H. M. Srivastava and J. Choi, Series Associated with the Zeta and Related Functions, Kluwer Academic Publishers, Dordrecht, Boston, and London, 2001
- H. M. Srivastava and P. W. Karlsson, Multiple Gaussian Hypergeometric Series, Ellis Harwood limited, Chichester, 1985
- H. M. Srivastava and H. L. Monacha, A Treatise on Generating Functions, Ellis Harwood limited, Chichester, 1984
Cited by
- APPLICATIONS OF GENERALIZED KUMMER'S SUMMATION THEOREM FOR THE SERIES2F1 vol.46, pp.6, 2009, https://doi.org/10.4134/BKMS.2009.46.6.1201
- GENERALIZED DOUBLE INTEGRAL INVOLVING KAMPÉ DE FÉRIET FUNCTION vol.33, pp.1, 2011, https://doi.org/10.5831/HMJ.2011.33.1.043
- AN EXTENSION OF THE TRIPLE HYPERGEOMETRIC SERIES BY EXTON vol.32, pp.1, 2010, https://doi.org/10.5831/HMJ.2010.32.1.061
- ON CERTAIN REDUCIBILITY OF KAMPE DE FERIET FUNCTION vol.31, pp.2, 2009, https://doi.org/10.5831/HMJ.2009.31.2.167
- Generalization of a Transformation Formula for the Exton's Triple Hypergeometric Series X12and X17 vol.54, pp.4, 2014, https://doi.org/10.5666/KMJ.2014.54.4.677
- Contiguous Extensions of Dixon's Theorem on the Sum of a 3F2 vol.2010, 2010, https://doi.org/10.1155/2010/589618
- CERTAIN INTEGRAL REPRESENTATIONS OF EULER TYPE FOR THE EXTON FUNCTION X5 vol.32, pp.3, 2010, https://doi.org/10.5831/HMJ.2010.32.3.389
- Relations between Lauricella’s triple hypergeometric function FA(3)(x,y,z) and Exton’s function X8 vol.2013, pp.1, 2013, https://doi.org/10.1186/1687-1847-2013-34
- CERTAIN INTEGRAL REPRESENTATIONS OF EULER TYPE FOR THE EXTON FUNCTION X8 vol.27, pp.2, 2012, https://doi.org/10.4134/CKMS.2012.27.2.257