DOI QR코드

DOI QR Code

WEIGHTED COMPOSITION OPERATORS ON LORENTZ SPACES

  • Arora, Subhash Chander (DEPARTMENT OF MATHEMATICS UNIVERSITY OF DELHI) ;
  • Datt, Gopal (DEPARTMENT OF MATHEMATICS PGDAV COLLEGE UNIVERSITY OF DELHI) ;
  • Verma, Satish (DEPARTMENT OF MATHEMATICS SGTB KHALSA COLLEGE UNIVERSITY OF DELHI)
  • Published : 2007.11.30

Abstract

In this paper we characterize the boundedness, compactness and closedness of the range of the weighted composition operators on Lorentz spaces L(p,q), $1.

Keywords

References

  1. S. C. Arora, G. Datt, and S. Verma, Multiplication operators on Lorentz spaces, Indian J. Math. 48 (2006), no. 3, 317-329
  2. C. Bennett and R. Sharpley, Interpolation of operators, Pure and Applied Mathematics, 129. Academic Press, Inc., Boston, MA, 1988
  3. J. T. Chan, A note on compact weighted composition operators on $L^p$( ), Acta Sci. Math. (Szeged) 56 (1992), no. 1-2, 165-168
  4. H. Hudzik, Rajeev Kumar, and Romesh Kumar, Matrix multiplication operators on Banach function spaces, Proc. Indian Acad. Sci. Math. Sci. 116 (2006), no. 1, 71-81 https://doi.org/10.1007/BF02829740
  5. R. A. Hunt, On L(p, q) spaces, Enseignement Math. (2) 12 (1966), 249-276
  6. M. R. Jabbarzadeh and E. Pourreza, A note on weighted composition operators on $L^p$-spaces, Bull. Iranian Math. Soc. 29 (2003), no. 1, 47-54
  7. M. R. Jabbarzadeh, Weighted composition operators between $L^p$-spaces, Bull. Korean Math. Soc. 42 (2005), no. 2, 369-378 https://doi.org/10.4134/BKMS.2005.42.2.369
  8. B. S. Komal and Shally Gupta, Composition operators on Orlicz spaces, Indian J. Pure Appl. Math. 32 (2001), no. 7, 1117-1122
  9. R. Kumar and R. Kumar, Composition operators on Banach function spaces, Proc. Amer. Math. Soc. 133 (2005), no. 7, 2109-2118 https://doi.org/10.1090/S0002-9939-05-07798-1
  10. R. Kumar and R. Kumar, Compact composition operators on Lorentz spaces, Mat. Vesnik 57 (2005), no. 3-4, 109-112
  11. G. G. Lorentz, Some new functional spaces, Ann. of Math. (2) 51 (1950), 37-55 https://doi.org/10.2307/1969496
  12. G. G. Lorentz, On the theory of spaces $\wedge$, Pacific J. Math. 1 (1951), 411-429 https://doi.org/10.2140/pjm.1951.1.411
  13. R. K. Singh and J. S. Manhas, Composition operators on function spaces, North-Holland Mathematics Studies, 179. North-Holland Publishing Co., Amsterdam, 1993
  14. E. M. Stein and G. Weiss, Introduction to Fourier analysis on Euclidean spaces, Prince- ton Mathematical Series, No. 32. Princeton University Press, Princeton, N.J., 1971
  15. H. Takagi, Fredholm weighted composition operators, Integral Equations Operator Theory 16 (1993), no. 2, 267-276 https://doi.org/10.1007/BF01358956

Cited by

  1. Injective composition operators on Lorentz–Bochner spaces vol.46, pp.4, 2013, https://doi.org/10.1515/dema-2013-0488
  2. Operators on Weighted Lorentz–Karamata–Bochner Spaces vol.39, pp.2, 2018, https://doi.org/10.1134/S1995080218020075
  3. Weighted composition operators induced by strongly measurable functions pp.2190-7668, 2018, https://doi.org/10.1007/s13370-018-0596-y