DOI QR코드

DOI QR Code

Indoor RSSI Characterization using Statistical in Wireless Sensor Network

무선 센서네트워크에서의 통계적 방법에 의한 실내 RSSI 측정

  • 푸촨친 (동서대학교 유비쿼터스IT학과) ;
  • 정완영 (동서대학교 컴퓨터정보통신공학부)
  • Published : 2007.11.30

Abstract

In indoor environment, the combination of the two variations, large scale(path loss) and small scale(fading), leads to non-linear variation of RSSI(received signal strength indicator) values as distance varied. This has been one of the difficulties for indoor location estimation. This paper presents new findings on indoor RSSI characterization for more accurate model building. Experiments have been done statistically to find overall trend of RSSI values at different places and times within the same room. From experiments, it has been shown that the variation of RSSI values can be determined by both spatial and temporal factors. These two factors are directly indicated by the two main parameters of path loss model. The results show that all sensor nodes which are located at different places share the same characterization value for the temporal parameter whereas different values for the spatial parameters. The temporal parameter also has a large scale variation effect that is slowly time varying due to environmental changes. Using this relationship, the characterization for location estimation can be more efficient and accurate.

실내 환경에서 이러한 두가지변수인 대규모에서의 경로손실과 소규모에서의 페이딩현상은 거리에 대한 RSSI(Received Signal Strength Indicator) 값의 비선형적인 변화를 유발하게 되며 이러한 현상이 실내위치 추적에서의 문제점의 하나로 지적되고 있다. 이 연구에서는 동일한 방에서의 다른 위치와 시간에서의 RSSI변화를 실험에 의한 통계에 의해 찾아서 보다 정밀한 모델을 세워서 실내 RSSI 특성화를 이루려고 하였다. 실험에서 RSSI값이 공간과 일시적인 요인 두가지에 의해 결정되는 것이 확인되었고 다른 위치에 있는 모든 센서 노드도 공간차라메터는 다르지만 임시파라메터값은 동일하다는 것을 확인하였다. 임시 파라메터들도 환경변화에 따라 천천히 신간에 따라 변화하는 대규모적인 변수의 특성을 지닌다. 이러한 관계를 활용하여 위치추적을 보다 효율적이고 정밀하게 평가할 수 있었다.

Keywords

References

  1. K.W. Cheung, H.C. So, W.-K. Ma, and Y.T. Chan, Least Squares Algorithms for Time-of-Arrival Based Mobile Location, IEEE Transactions on Signal Processing, vol.52, No.4, pp.1121-1128, April 2004 https://doi.org/10.1109/TSP.2004.823465
  2. Saket Das, Charles Gleason, Shuo Shen, Steve Goddard, and Lance C. Perez, 2-D Tracking Performance Evaluation Using the Cricket Location-Support System, IEEE International Conference on Electro Information Technology, May 2005
  3. Kannan Srinivasan and Philip Levis, RSSI is Under Appreciated, In Proceeding of the 3rd workshop on Embedded Networked Sensors, 2006
  4. Mark Terwillinger, A. Gupta, A. Khokhar, G. Greenwood, Localization using Evolution Strategies in Sensornets. IEEE Congress on Evolutionary Computation. September 2005
  5. Hofmann-Wellenhof, B. H. Lichtenegger, and Collins J., Global Positioning System: Theory and Practice, 4th ed., Springer Verlag, 1997
  6. Dismitrios Lymberopoulos, Quentin Lindsey, and Andreas Savvides, An Empirical Characterization of Radio Signal Strength Variability in 3-D IEEE 802.15.4 Networks using Monopole Antennas, LNCS, 3868, pp.326-341, 2006
  7. Yiming Ji, Saad Biaz, Shaoen Wu, and Bing Qi, Impact of Building Environment on the performance of Dynamic Indoor Localization. IEEE WAMICON, 2006
  8. S. Phaiboon, An Empirically Based Path Loss Model for Indoor Wireless Channels in Laboratory Building, in Proceedings of IEEE TENCON, 2002
  9. M. Lott and I. Forkel, A multi-wall-and-floor model for indoor radio propagation, IEEE vehicular Technology Conference, vol.1, pp.464-468, May 2001
  10. Yiming Ji, Saad Biaz, Santosh Pandey, and Prathima Agrawal, ARIADNE: A Dynamic Indoor Signal Map Construction and Localization System, Mobisys, 2006