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ABSTRACT

Film bulk acoustic wave resonator (FBAR) technology has attracted a great attention as a promising technology to fabricate the
next-generation RF filters mainly because the FBAR technology can be integrated with current Si processing. The RF filters are basically
composed of several FBAR devices connected in parallel and in series, and their characteristics depend highly on the FBAR device
characteristics. Thus, it is important to design high quality FBAR devices by device or process optimization. This kind of effort may enhance
the FBAR device characteristics, eventually leading to FBAR filters of high performance. In this paper, we describe the methods to more
effectively improve the resonance characteristics of the FBAR devices.

=
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1. Introduction Unfortunately, RF filters have been used as an off-chip

component for wireless mobile systems. This is because the

Recently, a considerable technology progress in conventional RF filters can hardly be integrated with current

microelectronics has enabled most of RF components to be Si-based CMOS process technologies [1-4). From this point

highly integrated in a one-chip or a transceiver. of view, the film bulk acoustic wave resonator (FBAR)
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devices and their technologies are likely to be a promising
candidate to resolve the above issue mainly because the
materials and fabrication process of FBAR device are very
compatible with the current CMOS processing, leading to a
fully integrated radio solution. Moreover, the FBAR devices
have excellent characteristics such as high Q-factor, very
small size, good power handling characteristic, and low
insertion loss. In addition, the FBAR devices can be applied
for RF/IF filters, duplexers, and voltage-controlled
oscillators [5-8]. General acoustic wave devices based on
piezoelectric materials have been in commercial use for over
60 years [9]. The ceramic resonators employ an
electromagnetic wave and its size is also determined by the
electromagnetic wavelength. Recalling the relationship
(frequency x wavelength = speed), it will be clear that the
acoustic phase velocity is approximately 3 to 4
orders-of-magnitude less than the electromagnetic phase
velocity for a given resonance frequency. The dimensions of
an acoustic wave device can be several orders of magnitude
smaller than those for an electromagnetic wave device.
Thus, the FBAR device has very small size, higher device
performance, and stronger potential for realization of MMIC
or one-chip than any other technology [10,11].

0. Device Fabrication

As shown in Fig. 1, the thin film layers for the FBAR
devices were deposited in an RF/DC magnetron sputtering
system where four different materials (ZnO, SiO,, W, and
Co) were deposited. Besides, an electric dehydrate furnace
was used to investigate the effects of various annealing
methods on the FBAR characteristics. The acoustic Bragg
reflector having SiOy/W multilayers was formed by the
thin-film deposition method on 4-inch silicon wafers. Each
layer has one quarter wave-length (A/4) of the resonance
frequency in order to acoustically isolate the piezoelectric
layer from the silicon substrate. In order to further improve
the resonance characteristics of the FBAR devices, a thermal
anmealing process was additionally employed for the
W/SiO, multi-layered Bragg reflectors immediately after

they were deposited on a silicon substrate using an RF
sputtering technique. In addition, the FBAR devices with the
Bragg reflectors annealed at 400C/30 min have shown
excellent resonance characteristics in terms of return loss
and Q-factor. Based on these findings, the optimum thermal
annealing condition seems to be around 400°C/30 min and
this approach seems very useful for improving the resonance
characteristics of SMR-type FBAR devices with the
multi-layer Bragg reflectors. Finally, the effects of the
thermal annealing of the Bragg reflectors on the resonance
characteristics of the FBAR devices particularly with Co
electrodes were investigated and compared with those with
Al electrodes. We fabricated the two devices, which are
Al-FBAR and Co-FBAR devices for comparing their
resonance characteristics. Compared with Al-FBAR
devices, the resonance characteristics are more improved in
Co-FBAR devices, indicating that the ZnO/Co has highly
preferred orientation towards c-axis as compared to the
ZnO/Al. Consequently, the resonance characteristics can be
further improved by using Co electrodes, instead of using Al
electrodes. The combination of both thermal annealing and
Co electrodes seems very useful to more effectively improve
the resonance characteristics of the FBAR devices with the
W/SiO; multi-layer reflectors

© () (e

Fig. 1 (a) three-dimensional schematic, (b cross
section SEM picture, and three kinds of top-view
patterns [(c) pattern 1, (d) pattern 2, and (e)

pattern 3] of FBAR devices.
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IIl. Resonance Characteristics

Return loss (Si) of three patterns were plotted and
summarized for the comparison of the annealing effects
according to three different annealing steps in Fig. 2 and
Table 1. The resonance characteristics of the three samples
annealed by Bragg reflector annealing, post-annealing, and
two-step annealing were compared with the non-annealed
sample. First, the return losses of sample B treated by Bragg
reflector-annealing were around 3.18, 1.384, 0.96 dB better
than those of non-annealed sample A. Second, the return
losses of sample C were around 4.87, 4.244, 8.99 dB
increased by post-annealing. than those of non-annealed
sample A. Last, the return losses of sample D were around
10.37, 11.614, 12.81 dB increased by proposed two-step
annealing. Therefore, the addition of the post-annealing of
200°C/2 hours on the sample D that is already annealed by
Bragg reflector-annealing at 400°C/30 min might further
eliminate any imperfect microstructures and incomplete
adhesions in FBAR devices without any significant
degradation in the acoustic Bragg reflector.

To estimate the resonator performance, -effective
electromechanical coupling coefficient and series/parallel
quality factors are used as figure of merits (FOMs).

Ky = (%)2 ot

e fp
Q — fs/p dAZIN
s/p 9 | dfs/p

f s/p

where fs and fp are series and parallel resonance
frequencies and the / Zi, is the slope of the input impedance
phase. Fig. 3 shows that the slop of £ Z, as a function of the
frequency with the pattern 1 in Fig. 2 and the calculated
effective electromechanical coupling coefficient Kei® and
series and parallel quality factor Qgp values for FBAR
devices with pattern 1 are tabulated in Table 2.

K and Qs of the RBAR resonators annealed by Bragg
reflector-annealing and post-annealing methods were
improved. Much-more improvement could be obtained by
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Fig. 2 Return loss S11 measurement results
against frequency for three different top
electrode patterns.

the proposed two-step annealing. The resonance
characteristics were compared for various annealing
methods. As a result, return loss Sy, series and parallel
quality factor Qsp, and effective electromechanical coupling
coefficient K.« could be significantly improved by two-step
annealing.
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Table 1. Summarized return loss measurement
results for three different patterns.

Sample Return loss [dB]

Name Pattern 1 Pattern 2 Pattern 3
Sample A -14.79 -16.32 -17.48
Sample B -17.97 -17.70 -18.44
Sample C -19.66 -20.56 -26.47
Sample D -25.16 -21.93 -30.29

Table 2. Calculated series and parallel quality
factors and electromechanical coupling
coefficients for FBAR devices (pattern 1).

Effective
Sample Quality factor electromechanical
Name coupling coefficient
Q. Qe Kt
Sample A 5266 5992 1.48%
Sample B 5337 6046 1.86%
Sample C 5775 7314 1.89%
Sample D 8391 7482 2.01%
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Fig. 3 Slopes of ~Z, as a function of the
frequency for different annealing conditions
(FBAR devices with the pattern 1).

IV. Conclusion

In this paper, some methods to more effectively improve
the resonance characteristics of the FBAR devices were
clearly described. And, their resonance characteristics could
be further enhanced by the optimization of the fabrication
processing.
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