References
- A. Angelesco, Sur l'approximation simultanee de plusieurs integrales definies, C. R. Paris, 167 (1918), 629-631
- A. I. Aptekarev, Multiple orthogonal polynomials, J. Comp. Appl. Math. 99 (1998), no. 1-2, 423-447 https://doi.org/10.1016/S0377-0427(98)00175-7
- A. I. Aptekarev, A. Branquinho, and W. Van Assche, Multiple orthogonal polynomials for classical weights, Trans. Amer. Math. Soc. 355 (2003), no. 10, 3887-3914 https://doi.org/10.1090/S0002-9947-03-03330-0
- A. I. Aptekarev and H. Stahl, Asymptotics of Hermite-Pade polynomials, in A. Gonchar and E. B. Saff (Eds.), Progress in Approximation Theory, vol. 19, Springer Ser. Comp. Math. Springer, (1992), 127-167
- J. Arvesu, J. Coussement, and W. Van Assche, Some discrete multiple orthogonal poly- nomials, J. Comp. Appl. Math. 153 (2003), no. 1-2, 19-45 https://doi.org/10.1016/S0377-0427(02)00597-6
- B. Beckermann, J. Coussement, and W. Van Assche, Multiple Wilson and Jacobi-Pineiro polynomials, J. Approx. Theory 132 (2005), no. 2, 155-181 https://doi.org/10.1016/j.jat.2004.12.001
- C. Brezinski and J. Van Iseghem, Vector orthogonal polynomials of dimension -d, Ap- proximation and computation (West Lafayette, IN, 1993), Internat. Ser. Numer. Math., 119, Birkhauser Boston, Boston, (1994), 29-39
- M. G. de Bruin, Simultaneous Pade approximants and orthogonality, Lecture Notes in Math. 1171, Springer, (1985), 74-83
- J. Coussement and W. Van Assche, Gaussian quadrature for multiple orthogonal poly- nomials, J. Comp. Appl. Math. 178 (2005), no. 1-2, 131-145 https://doi.org/10.1016/j.cam.2004.04.016
- V. A. Kalyagin, Hermite-Pade approximants and spectral analysis of nonsymmetric operators, Math. Sb. 185 (1994), no. 6, 79-100
- V. A. Kalyagin, Hermite-Pade approximants and spectral analysis of nonsymmetric operators, English transl. in. Russian Acad. Sci. Sb. Math. 82 (1995), no. 1, 199-216 https://doi.org/10.1070/SM1995v082n01ABEH003558
- M. Krawtchouk, Sur Une Generalisation des Polynomes d'Hermite, C. R. Acad. Sci. 189 (1929), 620-622
- D. W. Lee, Some recurrence relations of multiple orthogonal polynomials, J. Korean Math. Soc. 42 (2005), no. 4, 673-693 https://doi.org/10.4134/JKMS.2005.42.4.673
- A. F. Nikiforov, S. K. Suslov, and V. B. Uvarov, Classical Orthogonal Polynomials of a Discrete Variable, Springer-Verlag, Berlin, 1991
- E. M. Nikishin and V. N. Sorokin, Rational Approximations and Orthogonality, Trans- lations of Mathematical Monographs 92, Amer. Math. Soc., 1991
- K. Postelmans and W. Van Assche, Multiple little q-Jacobi polynomials, J. Comput. Appl. Math. 178 (2005), no. 1-2, 361-375 https://doi.org/10.1016/j.cam.2004.03.031
- G. Szego, Orthogonal Polynomials, 4th ed., Amer. Math. Soc., Colloq. Publ. 23, Providence, RI, 1975
- W. Van Assche and E. Coussement, Some classical multiple orthogonal polynomials, J. Comp. Appl. Math. 127 (2001), no. 1-2, 317-347 https://doi.org/10.1016/S0377-0427(00)00503-3
- W. Van Assche, Difference equations for multiple Charlier and Meixner polynomials, in New Progress in Difference Equations (S. Elaydi et al. eds.), Taylor and Francis, London, (2004), 547-557
- J. Van Iseghem, Recurrence relations in the table of vector orthogonal polynomials, Nonlinear Numerical Methods and Rational Approximation II, Math. Appl., Kluwer Academic Publishers, Dordrecht, 296 (1994), 61-69
Cited by
- Difference equations for discrete classical multiple orthogonal polynomials vol.150, pp.2, 2008, https://doi.org/10.1016/j.jat.2007.06.002