DOI QR코드

DOI QR Code

A DIFFERENCE EQUATION FOR MULTIPLE KRAVCHUK POLYNOMIALS

  • Lee, Dong-Won (DEPARTMENT OF MATHEMATICS, TEACHERS COLLEGE KYUNGPOOK NATIONAL UNIVERSITY)
  • Published : 2007.11.30

Abstract

Let ${K^{(\vec{p};N)}_{\vec{n}}(x)}$ be a multiple Kravchuk polynomial with respect to r discrete Kravchuk weights. We first find a lowering operator for multiple Kravchuk polynomials ${K^{(\vec{p};N)}_{\vec{n}}(x)}$ in which the orthogonalizing weights are not involved. Combining the lowering operator and the raising operator by Rodrigues# formula, we find a (r+1)-th order difference equation which has the multiple Kravchuk polynomials ${K^{(\vec{p};N)}_{\vec{n}}(x)}$ as solutions. Lastly we give an explicit difference equation for ${K^{(\vec{p};N)}_{\vec{n}}(x)}$ for the case of r=2.

Keywords

References

  1. A. Angelesco, Sur l'approximation simultanee de plusieurs integrales definies, C. R. Paris, 167 (1918), 629-631
  2. A. I. Aptekarev, Multiple orthogonal polynomials, J. Comp. Appl. Math. 99 (1998), no. 1-2, 423-447 https://doi.org/10.1016/S0377-0427(98)00175-7
  3. A. I. Aptekarev, A. Branquinho, and W. Van Assche, Multiple orthogonal polynomials for classical weights, Trans. Amer. Math. Soc. 355 (2003), no. 10, 3887-3914 https://doi.org/10.1090/S0002-9947-03-03330-0
  4. A. I. Aptekarev and H. Stahl, Asymptotics of Hermite-Pade polynomials, in A. Gonchar and E. B. Saff (Eds.), Progress in Approximation Theory, vol. 19, Springer Ser. Comp. Math. Springer, (1992), 127-167
  5. J. Arvesu, J. Coussement, and W. Van Assche, Some discrete multiple orthogonal poly- nomials, J. Comp. Appl. Math. 153 (2003), no. 1-2, 19-45 https://doi.org/10.1016/S0377-0427(02)00597-6
  6. B. Beckermann, J. Coussement, and W. Van Assche, Multiple Wilson and Jacobi-Pineiro polynomials, J. Approx. Theory 132 (2005), no. 2, 155-181 https://doi.org/10.1016/j.jat.2004.12.001
  7. C. Brezinski and J. Van Iseghem, Vector orthogonal polynomials of dimension -d, Ap- proximation and computation (West Lafayette, IN, 1993), Internat. Ser. Numer. Math., 119, Birkhauser Boston, Boston, (1994), 29-39
  8. M. G. de Bruin, Simultaneous Pade approximants and orthogonality, Lecture Notes in Math. 1171, Springer, (1985), 74-83
  9. J. Coussement and W. Van Assche, Gaussian quadrature for multiple orthogonal poly- nomials, J. Comp. Appl. Math. 178 (2005), no. 1-2, 131-145 https://doi.org/10.1016/j.cam.2004.04.016
  10. V. A. Kalyagin, Hermite-Pade approximants and spectral analysis of nonsymmetric operators, Math. Sb. 185 (1994), no. 6, 79-100
  11. V. A. Kalyagin, Hermite-Pade approximants and spectral analysis of nonsymmetric operators, English transl. in. Russian Acad. Sci. Sb. Math. 82 (1995), no. 1, 199-216 https://doi.org/10.1070/SM1995v082n01ABEH003558
  12. M. Krawtchouk, Sur Une Generalisation des Polynomes d'Hermite, C. R. Acad. Sci. 189 (1929), 620-622
  13. D. W. Lee, Some recurrence relations of multiple orthogonal polynomials, J. Korean Math. Soc. 42 (2005), no. 4, 673-693 https://doi.org/10.4134/JKMS.2005.42.4.673
  14. A. F. Nikiforov, S. K. Suslov, and V. B. Uvarov, Classical Orthogonal Polynomials of a Discrete Variable, Springer-Verlag, Berlin, 1991
  15. E. M. Nikishin and V. N. Sorokin, Rational Approximations and Orthogonality, Trans- lations of Mathematical Monographs 92, Amer. Math. Soc., 1991
  16. K. Postelmans and W. Van Assche, Multiple little q-Jacobi polynomials, J. Comput. Appl. Math. 178 (2005), no. 1-2, 361-375 https://doi.org/10.1016/j.cam.2004.03.031
  17. G. Szego, Orthogonal Polynomials, 4th ed., Amer. Math. Soc., Colloq. Publ. 23, Providence, RI, 1975
  18. W. Van Assche and E. Coussement, Some classical multiple orthogonal polynomials, J. Comp. Appl. Math. 127 (2001), no. 1-2, 317-347 https://doi.org/10.1016/S0377-0427(00)00503-3
  19. W. Van Assche, Difference equations for multiple Charlier and Meixner polynomials, in New Progress in Difference Equations (S. Elaydi et al. eds.), Taylor and Francis, London, (2004), 547-557
  20. J. Van Iseghem, Recurrence relations in the table of vector orthogonal polynomials, Nonlinear Numerical Methods and Rational Approximation II, Math. Appl., Kluwer Academic Publishers, Dordrecht, 296 (1994), 61-69

Cited by

  1. Difference equations for discrete classical multiple orthogonal polynomials vol.150, pp.2, 2008, https://doi.org/10.1016/j.jat.2007.06.002