DOI QR코드

DOI QR Code

WEIGHTED ESTIMATES FOR ROUGH PARAMETRIC MARCINKIEWICZ INTEGRALS

  • Published : 2007.11.30

Abstract

We establish a weighted norm inequality for a class of rough parametric Marcinkiewicz integral operators $\mathcal{M}^{\rho}_{\Omega}$. As an application of this inequality, we obtain weighted $L^p$ inequalities for a class of parametric Marcinkiewicz integral operators $\mathcal{M}^{*,\rho}_{\Omega,\lambda}\;and\;\mathcal{M}^{\rho}_{\Omega,S}$ related to the Littlewood-Paley $g^*_{\lambda}-function$ and the area integral S, respectively.

Keywords

References

  1. A. Benedek, A. Calderon, and R. Panzone, Convolution operators on Banach space valued functions, Proc. Nat. Acad. Sci. U. S. A. 48 (1962), 356-365 https://doi.org/10.1073/pnas.48.3.356
  2. J. Chen, D. Fan, and Y. Pan, A note on a Marcinkiewicz integral operator, Math. Nachr. 227 (2001), 33-42 https://doi.org/10.1002/1522-2616(200107)227:1<33::AID-MANA33>3.0.CO;2-0
  3. R. Coifman and G. Weiss, Extensions of Hardy spaces and their use in analysis, Bull. Amer. Math. Soc. 83 (1977), no. 4, 569-645 https://doi.org/10.1090/S0002-9904-1977-14325-5
  4. Y. Ding, D. Fan and Y. Pan, Weighted boundedness for a class of rough Marcinkiewicz integrals, Indiana Univ. Math. J. 48 (1999), no. 3, 1037-1055
  5. J. Duoandikoetxea and J. L. Rubio de Francia, Maximal and singular integral operators via Fourier transform estimates, Invent. Math. 84 (1986), no. 3, 541-561 https://doi.org/10.1007/BF01388746
  6. J. Duoandikoetxea, Weighted norm inequalities for homogeneous singular integrals, Trans. Amer. Math. Soc. 336 (1993), no. 2, 869-880 https://doi.org/10.2307/2154381
  7. J. Garcia-Cuerva and J. L. Rubio de Francia, Weighted norm inequalities and related topics, North-Holland Mathematics Studies, 116. Notas de Matematica [Mathematical Notes], 104. North-Holland Publishing Co., Amsterdam, 1985
  8. L. Grafakos and A. Stefanov, Lp bounds for singular integrals and maximal singular integrals with rough kernels, Indiana Univ. Math. J. 47 (1998), no. 2, 455-469
  9. L. Hormander, Estimates for translation invariant operators in Lp spaces, Acta Math. 104 (1960), 93-140 https://doi.org/10.1007/BF02547187
  10. D. S. Kurtz, Littlewood-Paley and multiplier theorems on weighted $L^p$ spaces, Trans. Amer. Math. Soc. 259 (1980), no. 1, 235-254 https://doi.org/10.2307/1998156
  11. Ming-Yi Lee and Chin-Cheng Lin, Weighted $L^p$ boundedness of Marcinkiewicz integral, Integral Equations Operator Theory 49 (2004), no. 2, 211-220 https://doi.org/10.1007/s00020-002-1204-x
  12. M. Sakamoto and K. Yabuta, Boundedness of Marcinkiewicz functions, Studia Math. 135 (1999), no. 2, 103-142
  13. S. Sato, Remarks on square functions in the Littlewood-Paley theory, Bull. Austral. Math. Soc. 58 (1998), no. 2, 199-211 https://doi.org/10.1017/S0004972700032172
  14. E. M. Stein, On the functions of Littlewood-Paley, Lusin, and Marcinkiewicz, Trans. Amer. Math. Soc. 88 (1958), 430-466 https://doi.org/10.2307/1993226
  15. E. M. Stein, Singular integrals and di$\circledR$erentiability properties of functions, Princeton Math- ematical Series, No. 30 Princeton University Press, Princeton, N.J. 1970
  16. E. M. Stein, Harmonic analysis: real-variable methods, orthogonality, and oscillatory inte- grals, With the assistance of Timothy S. Murphy. Princeton Mathematical Series, 43. Monographs in Harmonic Analysis, III. Princeton University Press, Princeton, NJ, 1993
  17. E. M. Stein and G. Weiss, Interpolation of operators with change of measures, Trans. Amer. Math. Soc. 87 (1958), 159-172 https://doi.org/10.2307/1993094
  18. A. Torchinsky and S. Wang, A note on the Marcinkiewicz integral, Colloq. Math. 60/61 (1990), no. 1, 235-243