참고문헌
- S.-W. Lee and J.-H. Kim, 'Robust adaptive stick-slip friction compensation,' IEEE Trans. on Industrial Electronics, vol. 42, no. 5, pp. 474-479, 1995 https://doi.org/10.1109/41.464609
- C. Canudas de Wit and P. Lischinsky, 'Adaptive friction compensation with partially known dynamic friction model,' Int. J. of Adaptive Control & Signal Processing, vol. 11, pp. 65-80, 1997 https://doi.org/10.1002/(SICI)1099-1115(199702)11:1<65::AID-ACS395>3.0.CO;2-3
- R. Hirschorn and G. Miller, 'Control of nonlinear systems with friction,' IEEE Trans. on Control Systems Technology, vol. 7, no. 5, pp. 588-595, 1999 https://doi.org/10.1109/87.784422
- P. Vedagarbha, D. Dawson, and M. Feemster, 'Tracking control of mechanical systems in the presence of nonlinear dynamic friction effects,' IEEE Trans. on Control Systems Technology, vol. 7, no. 4, pp. 446-456, 1999 https://doi.org/10.1109/87.772160
- J.-S. Chen and J.-C. luang, 'A robust friction control scheme of robot manipulators,' Int. Conf. on Robotics & Automation, pp. 3266-3271, 2003
- K. Sato, K. Nakamoto, and A. Shimokohbe, 'Practical control of precision positioning mechanism with friction,' Precision Engineering, vol. 28, pp. 426-434, 2004 https://doi.org/10.1016/j.precisioneng.2004.01.003
- J.-J. Kim and T. Singh, 'Controller design for flexible systems with friction: Pulse Amplitude Control,' J. of Dynamic Systems, Measurement, & Control, vol. 127, 336-344, 2005 https://doi.org/10.1115/1.1988341
- C. Vivas, F. R. Rubio, and C. Canudas de Wit, 'Gain-scheduling control of systems with dynamic friction,' IEEE Conf. on Decision & Control, pp. 89-94, 2002
- M.-S. Tsai, M.-T. Lin, and H.-T. Tau, 'Development of command-based iterative learning control algorithm with consideration of friction, disturbance, and noise effects,' IEEE Trans. on Control Systems Technology, vol. 14, no. 3, pp. 511-518, 2006 https://doi.org/10.1109/TCST.2005.860521
- S. N. Huang, K. K. Tan, and T. H. Lee, 'Adaptive friction compensation using neural network approximation,' IEEE Trans. on Systems, Man, & Cybernetics: Part C, vol. 30, no. 4, pp. 551-557, 2000 https://doi.org/10.1109/5326.897081
- Y. H. Kim and F. L. Lewis, 'Reinforcement adaptive learning neural-net-based friction compensation control for high speed and precision,' IEEE Trans. on Control Systems Technology, vol. 8, no. 1, pp. 118-126, 2000 https://doi.org/10.1109/87.817697
- C. Hinta, B. Angerer, and D. Scroder, 'Online identification of a mechatronic systems with structured recurrent neural networks,' IEEE Int. Symposium on Industrial Electronics, pp. 288-293, 2002
- R. Selmic and F. Lewis, 'Neural-network approximation of piecewise continuous functions: Application to friction compensation,' IEEE Trans. on Neural Networks, vol. 13, no. 3, pp. 745-751, 2002 https://doi.org/10.1109/TNN.2002.1000141
- M. Ciliz and M. Tomizuka, 'Neural network based friction compensation in motion control,' Electronics Letters, vol. 40, no. 12, pp. 752-753, 2004 https://doi.org/10.1049/el:20040500
- B. Armstrong-Helouvry, P. Dupont, and C. Canudas-de-wit, 'A survey of models, analysis tools and compensation methods for the control of machines with friction,' Automatica, vol. 30, no. 7, pp. 1083-1138, 1994 https://doi.org/10.1016/0005-1098(94)90209-7
- M. Saerens and A. Soquet, 'Neural controller based on back-propagation algorithm,' lEE Proceedings F, vol. 138, no. 1, pp. 55-62, 1991
- H. K. Khalil, Nonlinear systems, New Jersey, Prentice Hall, 2002
- S. K. Mitra, Digital signal processing, New York, McGraw Hill, 2006