확률마찰특성을 갖는 비선형 기계시스템을 위한 지능형 온라인 제어시스템

Intelligent Online Control for Nonlinear Mechanical Systems with Random Friction Effect

  • 발행 : 2007.12.01

초록

This paper presents online neural control approach for nonlinear mechanical systems with random friction nature. We construct neural auxiliary control to compensate a control error in online for overcoming friction effect which reduces control performance in real-time implementation. Friction dynamics is estimated by using online least square(LS) method, which is utilized for online learning of the neural network. We accomplish computer simulation for evaluating the proposed control approach comparing offline control method to demonstrate its superiority.

키워드

참고문헌

  1. S.-W. Lee and J.-H. Kim, 'Robust adaptive stick-slip friction compensation,' IEEE Trans. on Industrial Electronics, vol. 42, no. 5, pp. 474-479, 1995 https://doi.org/10.1109/41.464609
  2. C. Canudas de Wit and P. Lischinsky, 'Adaptive friction compensation with partially known dynamic friction model,' Int. J. of Adaptive Control & Signal Processing, vol. 11, pp. 65-80, 1997 https://doi.org/10.1002/(SICI)1099-1115(199702)11:1<65::AID-ACS395>3.0.CO;2-3
  3. R. Hirschorn and G. Miller, 'Control of nonlinear systems with friction,' IEEE Trans. on Control Systems Technology, vol. 7, no. 5, pp. 588-595, 1999 https://doi.org/10.1109/87.784422
  4. P. Vedagarbha, D. Dawson, and M. Feemster, 'Tracking control of mechanical systems in the presence of nonlinear dynamic friction effects,' IEEE Trans. on Control Systems Technology, vol. 7, no. 4, pp. 446-456, 1999 https://doi.org/10.1109/87.772160
  5. J.-S. Chen and J.-C. luang, 'A robust friction control scheme of robot manipulators,' Int. Conf. on Robotics & Automation, pp. 3266-3271, 2003
  6. K. Sato, K. Nakamoto, and A. Shimokohbe, 'Practical control of precision positioning mechanism with friction,' Precision Engineering, vol. 28, pp. 426-434, 2004 https://doi.org/10.1016/j.precisioneng.2004.01.003
  7. J.-J. Kim and T. Singh, 'Controller design for flexible systems with friction: Pulse Amplitude Control,' J. of Dynamic Systems, Measurement, & Control, vol. 127, 336-344, 2005 https://doi.org/10.1115/1.1988341
  8. C. Vivas, F. R. Rubio, and C. Canudas de Wit, 'Gain-scheduling control of systems with dynamic friction,' IEEE Conf. on Decision & Control, pp. 89-94, 2002
  9. M.-S. Tsai, M.-T. Lin, and H.-T. Tau, 'Development of command-based iterative learning control algorithm with consideration of friction, disturbance, and noise effects,' IEEE Trans. on Control Systems Technology, vol. 14, no. 3, pp. 511-518, 2006 https://doi.org/10.1109/TCST.2005.860521
  10. S. N. Huang, K. K. Tan, and T. H. Lee, 'Adaptive friction compensation using neural network approximation,' IEEE Trans. on Systems, Man, & Cybernetics: Part C, vol. 30, no. 4, pp. 551-557, 2000 https://doi.org/10.1109/5326.897081
  11. Y. H. Kim and F. L. Lewis, 'Reinforcement adaptive learning neural-net-based friction compensation control for high speed and precision,' IEEE Trans. on Control Systems Technology, vol. 8, no. 1, pp. 118-126, 2000 https://doi.org/10.1109/87.817697
  12. C. Hinta, B. Angerer, and D. Scroder, 'Online identification of a mechatronic systems with structured recurrent neural networks,' IEEE Int. Symposium on Industrial Electronics, pp. 288-293, 2002
  13. R. Selmic and F. Lewis, 'Neural-network approximation of piecewise continuous functions: Application to friction compensation,' IEEE Trans. on Neural Networks, vol. 13, no. 3, pp. 745-751, 2002 https://doi.org/10.1109/TNN.2002.1000141
  14. M. Ciliz and M. Tomizuka, 'Neural network based friction compensation in motion control,' Electronics Letters, vol. 40, no. 12, pp. 752-753, 2004 https://doi.org/10.1049/el:20040500
  15. B. Armstrong-Helouvry, P. Dupont, and C. Canudas-de-wit, 'A survey of models, analysis tools and compensation methods for the control of machines with friction,' Automatica, vol. 30, no. 7, pp. 1083-1138, 1994 https://doi.org/10.1016/0005-1098(94)90209-7
  16. M. Saerens and A. Soquet, 'Neural controller based on back-propagation algorithm,' lEE Proceedings F, vol. 138, no. 1, pp. 55-62, 1991
  17. H. K. Khalil, Nonlinear systems, New Jersey, Prentice Hall, 2002
  18. S. K. Mitra, Digital signal processing, New York, McGraw Hill, 2006