Fabrication of Hollow-type Silicon Microneedle Array Using Microfabrication Technology

반도체 미세공정 기술을 이용한 Hollow형 실리콘 미세바늘 어레이의 제작

  • 김승국 (고려대 공대 전기공학과) ;
  • 장종현 (고려대 공대 전기공학과) ;
  • 김병민 (고려대 공대 전기공학과) ;
  • 양상식 (아주대 전자공학과) ;
  • 황인식 (케이엠에이치(주) 중앙연구소) ;
  • 박정호 (고려대 공대 전기공학과)
  • Published : 2007.12.01

Abstract

Hollow-type microneedle array can be used for painless, continuous and stable drug delivery through a human skin. The needles must be sharp and have sufficient length in order to penetrate the epidermis. An array of hollow-type silicon microneedles was fabricated by using deep reactive ion etching and HNA wet etching with two oxide masks. Isotropic etching was used to create tapered tips of the needles, and anisotropic etching of Bosch process was used to make the extended length and holes of microneedles. The microneedles were formed by three steps of isotropic, anisotropic, and isotropic etching in order. The holes were made by one anisotropic etching step. The fabricated microneedles have $170{\mu}m$ width, $40{\mu}m$ hole diameter and $230{\mu}m$ length.

Keywords

References

  1. 박근우, '펄스 이온토포레시스를 이용한 마취제 펜타닐의 약물전달시스템 구현에 관한 연구', 석사학위논문, 고려대학교, 2006
  2. R, R. Seeley, T. D. Stephens, and P. Tate, Anatomy & Physiology, 6th Ed., McGraw-Hill, USA, p, 144, 2003
  3. E. V. Mukerjee, S. D. Collins, R. R. Isseroff, R. L. Smith, 'Microneedle array for transdermal biological fluid extraction and in situ analysis,' Sensors and Actuators A, Vol. 114, pp, 267-275, 2004 https://doi.org/10.1016/j.sna.2003.11.008
  4. H. J. G. E, Gardeniers, R. Luttge, E. J. W. Berenschot, M. J. de Boer, S. Y. Yeshurun, M. V. Hefetz, R. Oever, A. V. D. Berg, 'Silicon micromachined hollow microneedles for transdermal liquid transport,' Journal of Microelectromechanical Systems, Vol. 12, No. 16, pp. 855-862, 2005 https://doi.org/10.1109/JMEMS.2003.820293
  5. B. Stoeber, D. Liepmann, 'Arrays of hollow out-of-plane microneedles for drug delivery,' Journal of Microelectromechanical Systems, Vol. 14, No.3, pp. 472-479, 2005 https://doi.org/10.1109/JMEMS.2005.844843
  6. C. Chang, Y.-F. Wang, Y. Kanamori, J.-J. Shih, Y. Kawai, C.-K. Lee, K.-C. Wu, M. Esashi, 'Etching submicrometer trenches by using the Bosch process and its application to the fabrication of antireflection structures,' Journal of Micromechanics and Microengineerning, Vol. 15, pp. 580-585, 2005 https://doi.org/10.1088/0960-1317/15/3/020
  7. S. A. McAuley, H. Ashraf, L. Atabo, A. Chambers, S. Hall, J. Hopkins, G. Nicholls, 'Silicon micromachining using a high-density plasma source,' Journal of Physics D: Applied Physics, Vol. 34, pp. 2769-2774, 2001 https://doi.org/10.1088/0022-3727/34/18/309
  8. K. Richter, M. Orfert, H. Schuhrer, 'Variation of etch profile and surface properties during patterning of silicon substrates,' Surface and Coatings Technology Vol. 142-144, pp. 797-802, 2001
  9. M. J. Madou, Fundamentals of Microfabrication : The Science of Miniaturization, 2nd Ed., CRC Press, USA, p. 208, 2002
  10. K. R. Williams, 'Etch rates for micromachining processing-Part II,' Journal of Microelectromechanical Systems, Vol. 12, No. 6, pp. 761-778, 2003 https://doi.org/10.1109/JMEMS.2003.820936
  11. K. Ishihara, C.-F. Yung, A. A. Ayon, 'An inertial sensor technology using DRIE and wafer bonding with interconnecting capability,' Journal of Microelectromechanical Systems, Vol. 8, No. 4, pp. 403-408, 2003 https://doi.org/10.1109/84.809054
  12. J. Zhang, Q.-A. Huang, W.-H. Li, 'Simulations for surface evolvement and footing effect in ICP DRIE fabrications,' Journal of Physics: Conference Series 34, pp. 522-526, 2006 https://doi.org/10.1088/1742-6596/34/1/086