Fuzzy Controller Design for Markovian Jump Nonlinear Systems

  • Dong, Jiuxiang (Colllege of Information Science and Engineering, Northeastern University) ;
  • Yang, Guang-Hong (College of Information Science and Engineering, Northeastern University)
  • Published : 2007.12.31

Abstract

This paper is concerned with the problem of state feedback control of continuous-time nonlinear Markovian jump systems, which are represented by Takagi-Sugeno fuzzy models. A new method for designing state feedback stabilizing controllers is presented in terms of solvability of a set of linear matrix inequalities (LMIs), and it is shown that the new design method provides better or at least the same results of the existing method in the literature. Finally, a numerical example is given to illustrate the effectiveness of the proposed method.

Keywords

References

  1. Y. Ji and H. J. Chizeck. 'Jump linear quadratic Gaussian control in continuous time,' IEEE Trans. on Automatic Control, vol. 37, no. 12, pp. 1884-1892, 1992 https://doi.org/10.1109/9.182475
  2. S. Tan, J.-F. Zhang, and L. Yao, 'Optimality analysis of adaptive sampled control of hybrid systems with quadratic index,' IEEE Trans. on Automatic Control, vol. 50, no. 7, pp. 1044-1051, 2005 https://doi.org/10.1109/TAC.2005.851456
  3. J. B. Rd Val and E. F. Costa, 'Stabilizability and positiveness of solutions of the jump linear quadratic problem and the coupled algebraic Riccati equation,' IEEE Trans. on Automatic Control, vol. 50, no. 5, pp. 691-695, 2005 https://doi.org/10.1109/TAC.2005.846600
  4. C. E. de Souza, 'Robust stability and stabilization of uncertain discrete-time Markovian jump linear systems,' IEEE Trans. on Automatic Control, vol. 51, no. 5, pp. 836-841, 2006 https://doi.org/10.1109/TAC.2006.875012
  5. L. Hu, P. Shi, and B. Huang, 'Stochastic stability and robust control for sampled-data systems with Markovian jump parameters,' Journal of Mathematical Analysis and Applications, vol. 313, no. 2, pp. 504-517, 2006 https://doi.org/10.1016/j.jmaa.2005.08.019
  6. G. Kotsalis, A. Megretski, and M. A. Dahleh, 'Model reduction of discrete-time Markov jump linear systems,' Proc. Amer. Contr. Conf., pp. 454-459, 2006
  7. L. Li and V. A. Ugrinovskii, 'Decentralized robust control of uncertain Markov jump parameter systems via output feedback,' Proc. Amer. Contr. Conf., pp. 1340-1345, 2006
  8. C. E. de Souza, A. Trofino, and K. A. Barbosa, 'Mode-independent $H_{\infty}$ filters for hybrid Markov linear systems,' Proc. of the 43rd IEEE Conf. Decision and Control, vol. 1, pp. 947-952, 2004
  9. C. E. de Souza, 'A mode-independent $H_{\infty}$ filter design for discrete-time Markovian jump linear systems,' Proc. of the 42nd IEEE Conf. Decision and Control, pp. 2811-2816, 2003
  10. Q. Wang and J. Lam, '$H_{\infty}$ model approximation for discrete-time Markovian jump systems with mode-dependent time delays,' Proc. CDCECC' 05, pp. 6122-6127, 2005
  11. M. D. S. Aliyu and E. K. Boukas, '$H_{\infty}$ control for Markovian jump nonlinear systems,' Proc. of the 37th IEEE Conf. Decision and Control, pp.766-771, 1998
  12. K. Tanaka, T. Ikeda, and H. O. Wang, 'Fuzzy regulators and fuzzy observers: Relaxed stability conditions and LMI-based designs,' IEEE Trans. Fuzzy Syst., vol. 6, no. 2, pp. 250-265, 1998 https://doi.org/10.1109/91.669023
  13. K. Tanaka and H. O. Wang, Fuzzy Control Systems Design and Analysis: A Linear Matrix Inequality Approach, Wiley, New York, 2001
  14. K. Tanaka, T. Hori, and H. O. Wang, 'A multiple Lyapunov function approach to stabilization of fuzzy control systems,' IEEE Trans. Fuzzy Syst., vol. 11, no. 4, pp. 582-589, 2003 https://doi.org/10.1109/TFUZZ.2003.814861
  15. S. K. Nguang and S. Peng, ' $H_{\infty}$ fuzzy output feedback control design for nonlinear systems: An LMI approach,' IEEE Trans. Fuzzy Syst., vol. 11, no. 3, pp. 331-340, 2003 https://doi.org/10.1109/TFUZZ.2003.812691
  16. H.-N. Wu, 'Reliable LQ fuzzy control for continuous-time nonlinear systems with actuator faults,' IEEE Trans. Syst., Man, Cybern., Part B, vol. 34, no. 4, pp. 1743-1752, 2004 https://doi.org/10.1109/TSMCB.2004.828198
  17. M. C. M. Teixeira, E. Assuncão, and R. G. Avellar, 'On relaxed LMI-based designs for fuzzy regulators and fuzzy observers,' IEEE Trans. Fuzzy Syst., vol. 11, no. 5, pp. 613-622, 2003 https://doi.org/10.1109/TFUZZ.2003.817840
  18. H. D. Tuan, P. Apkarian, T. Narikiyo, and Y. Yamamoto, 'Parameterized linear matrix inequality techniques in fuzzy control system design,' IEEE Trans. Fuzzy Syst., vol. 9, no. 2, pp. 324-332, 2001 https://doi.org/10.1109/91.919253
  19. H. Ohtake, K. Tanaka and H. O. Wang, 'Switching fuzzy controller design based on switching Lyapunov function for a class of nonlinear systems,' IEEE Trans. Syst., Man, Cybern., Part B, vol. 36, no. 1, pp. 13-23, 2006 https://doi.org/10.1109/TSMCB.2005.852473
  20. G. Feng and J. Ma, 'Quadratic stabilization of uncertain discrete-time fuzzy dynamic system,' IEEE Trans. Circuits Syst. I, vol. 48, no. 11, pp. 1337-1344, 2001 https://doi.org/10.1109/81.964424
  21. C. H. Fang , Y. S. Liu, S. W. Kau, H. Lin, and C. H. Lee, 'A new LMI-based approach to relaxed quadratic stabilization of T-S fuzzy control systems,' IEEE Trans. Fuzzy Syst., vol. 14, no. 3, pp. 386-397, 2006 https://doi.org/10.1109/TFUZZ.2006.876331
  22. M. Johansson, A. Rantzer, and K. E. Arzen, 'Piecewise quadratic stability of fuzzy systems,' IEEE Trans. Fuzzy Syst., vol. 7, no. 6, pp. 713-722, 1999 https://doi.org/10.1109/91.811241
  23. D. J. Choi and P. Park, ' $H_{\infty}$ state- feedback controller design for discrete-time fuzzy systems using fuzzy weighting-dependent Lyapunov functions,' IEEE Trans. Fuzzy Syst., vol. 11, no. 2, pp. 271-278, 2003 https://doi.org/10.1109/TFUZZ.2003.809903
  24. G. Feng, C. L. Chen, D. Sun and Y. Zhu, ' $H_{\infty}$ controller synthesis of fuzzy dynamic systems based on piecewise Lyapunov functions and bilinear matrix inequalities,' IEEE Trans. Fuzzy Syst., vol. 13, no. 1, pp. 94-103, 2005 https://doi.org/10.1109/TFUZZ.2004.839662
  25. S. K. Nguang, W. Assawinchaichote, S. Peng, and S. Yan, 'Robust $H_{\infty}$ control design for uncertain fuzzy systems with Markovian jumps: An LMI approach,' Proc. Amer. Contr. Conf., pp. 1805-1810, 2005
  26. S. K. Nguang, W. Assawinchaichote, S. Peng, and S. Yan, '$H_{\infty}$ fuzzy filter design for uncertain nonlinear systems with Markovian jumps: an LMI approach,' Proc. Amer. Contr. Conf., pp. 1799-1804, 2005
  27. N. S. D. Arrifano and V. A. Oliveira, 'Robust $H_{\infty}$ fuzzy control design for Markovian jump systems,' Proc. of CDC-ECC'05, pp. 3243-3248, 2005
  28. H.-N. Wu and K.-Y. Cai, 'Mode-independent robust stabilization for uncertain Markovian jump nonlinear systems via fuzzy control,' IEEE Trans. Syst., Man, Cybern., Part B, vol. 36, no. 3, pp. 509-519, 2006 https://doi.org/10.1109/TSMCB.2005.862486
  29. L. El Ghaoui and M. Aitrami, 'Robust statefeedback stabilization of jump linear systems via LMIs,' Int. J. Robust Nonlinear Control, vol. 6, no. 9-10, pp. 1015-1022, 1996 https://doi.org/10.1002/(SICI)1099-1239(199611)6:9/10<1015::AID-RNC266>3.0.CO;2-0