DOI QR코드

DOI QR Code

Characterization of Bacterial Cellulose Production by Gluconacetobacter sp. JH232.

Gluconacetobacter sp. JH232의 Bacterial Cellulose 생성 특성연구

  • Ahn, Yeong-Hee (Department of Environment Engineering, Dong-A University) ;
  • Park, Jai-Hyo (Microbiotech Co.,Ltd.) ;
  • Go, Sang-Hee (Division of Biological Sciences, Pusan National University) ;
  • Jun, Hong-Ki (Division of Biological Sciences, Pusan National University)
  • Published : 2007.11.30

Abstract

Previous study (J. of Chem. Technol. Biotechnol. 2004, 79, 79-84) showed that bacterial cellulose (BC) produced by a bacterial strain JH232 has potential as a source for environmentally friendly ion exchange membranes. In this study, strain JH232 was investigated for phylogenetic classified and characterized for BC production. Comparative analysis of 16S rRNA gene revealed that the strain belongs to the genus Gluconacetobacter. Maximum production of BC was observed when JH232 was cultured in CSL medium (pH 5.5) at $30^{\circ}C$ as determined by flask experiment. When batch and fed-batch cultures of JH232 were performed in the fermenter experiment to compare BC productivity of the strain, BC productivity of fed-batch culture was 1.56 times higher than that of batch culture.

균주 JH232가 생성한 bacterial cellulose (BC)는 이온교환 막 생산을 위한 환경친화적 재료로서 잠재능이 있다는 것이 전 연구(J. of Chem. Technol. Biotechnol. 2004, 79, 79-84)를 통해 보고되었다. 본 연구를 통해 JH232를 동정하였으며 BC 생성 특성을 조사하였다. 16S rRNA 유전자의 비교분석을 통해 JH232는 Gluconacetobacter sp.인 것을 밝혀냈다. 플라스크실험 결과 이 균주는 초기 pH 5.5로 조절된 CSL 배지에서 온도가 $30^{\circ}C$인 조건하에 배양하였을 때 BC 생성량이 최대를 나타내었다. 발효조 실험을 통해서 회분식 배양보다 유가배양에 의해 JH232의 BC 생성량이 1.56배 더 높게 나타났다.

Keywords

References

  1. Altschul, S. F., T. l. Madden, A. J. Schifer, J. Zhang, Z. Zhang, W. Miller and D. J. Lipman. 1997. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 25, 3389-3402. https://doi.org/10.1093/nar/25.17.3389
  2. Brosius, J., H. L. Palmer, J. P. Kennedy and H. F. Noller. 1978. Complete nucleotide sequence of a ribosomal RNA gene from Escherichia coli. Proc. Natl. Acad. Sci. USA 75, 4801-4805. https://doi.org/10.1073/pnas.75.10.4801
  3. Bubey, V., C. Saxena, L. Singh, K. V. Ramana and R. S. Chauhan. 2002. Pervaporation of binary water-ethanol mixtures through bacterial cellulose membrane. Separation and Purification Tech. 27, 163-171. https://doi.org/10.1016/S1383-5866(01)00210-6
  4. Chao, Y., T. Ishida, Y. Sugano and M. Shoda. 2000. Bacterial cellulose production by Acetobacter xylinum in a 50-L internal-loop airlift reactor. Biotechnol. Bioeng. 68, 345-352. https://doi.org/10.1002/(SICI)1097-0290(20000505)68:3<345::AID-BIT13>3.0.CO;2-M
  5. Choi, Y. J., Y. Ahn, M. S. Kang, I. S. Kim, H. K. Jun and S. H. Moon. 2004. Preparation and characterization of acylic acid-grafted bacterial cellulose cation-exchange membrane using UV-graft polymerization. J. Chem. Technol. Biotechnol. 79, 79-84. https://doi.org/10.1002/jctb.942
  6. Czajaa, W., A. Krystynowicza, S. Bieleckia and R. M. Brown, Jr. 2006. Microbial cellulose-the natural power to heal wounds. Biomaterials. 27, 145-151. https://doi.org/10.1016/j.biomaterials.2005.07.035
  7. Evans, B. R., H. M. O'Neill, V. P. Malyvanh, I. Lee and J. Woodward. 2003. Palladium-bacterial cellulose membranes for fuel cells. Biosensors and Bioelectronics. 18, 917-923. https://doi.org/10.1016/S0956-5663(02)00212-9
  8. Jung, G. Y., H. O. Jung, J. R. Kim, Y. Ahn and S. Park. 1999. Isolation and characterization of Rhodopseudomonas palustris P4 which utilizes CO with the production of H2. Biotechnol. Lett. 21, 525-529. https://doi.org/10.1023/A:1005560630351
  9. Lane, D. J. 1991. 16S/23S rRNA sequencing. pp115-147. In Stackebrandt E. and M. Goodfellow (eds.), Nucleic acid techniques in bacterial systematics. John Wiley & Sons Ltd.
  10. Masanobu, M., T. Takaysu, M. Kazunobu, A. Osao and Y. Fumihiro. 1996. A synthetic medium for bacterial cellulose production by Acetobacter xykinum subsp. sucrofermentans. Biosci. Biotech. Biochem. 60, 575-579. https://doi.org/10.1271/bbb.60.575
  11. Pandey, L. K., C. Saxena and V. Dubey. 2005. Studies on pervaporative characteristics of bacterial cellulose membrane. Separation and Purification Technol. 42, 213-218. https://doi.org/10.1016/j.seppur.2004.07.014
  12. Sokollek, S. J., C. Hertel and W. P. Hammes. 1998. Descriptionof Acetobacter oboediens sp. nov. and Acetobacter pomorum sp. nov., two new species isolated from industrial vinegar fermentations Int. J. Syst. Bacteriol. 48, 935-940. https://doi.org/10.1099/00207713-48-3-935
  13. Somogyi, M. J. 1952. Notes on sugar determination. J. Biol. Chem. 19, 19-23.
  14. Sutherland, I. W. 1998. Novel and established applications of microbial polysaccharides. Trends Biotechnol. 16, 41-46. https://doi.org/10.1016/S0167-7799(97)01139-6
  15. Tadao, O., M. Takafumiand A. Minoru. 1995. Production of cellulose from D-Arabitol by Acetobacter xylinum KU-1. Biosci. Biotech. Biochem. 59, 1564-1565. https://doi.org/10.1271/bbb.59.1564
  16. Toyosaki, H., T. Naritomi, A. Seto, M. Matsuoka, T. Tsuchda and F. Yoshinaga. 1995. Screening of bacterial cellulose-producing Acetobacter strains suitable for agitated culture. Biosci. Biotech. Biochem. 59, 1498-1502. https://doi.org/10.1271/bbb.59.1498
  17. Vandamme, E. J., S. D. Baets, A. Vanbaelen, K. Joris and P. D. Wulf. 1998. Improved production of bacterial cellulose and its application potential. Polym. Degrad. & Stabil. 59, 93-99. https://doi.org/10.1016/S0141-3910(97)00185-7
  18. Yamada, Y. 2000. Transfer of Acetobacter oboediens Sokollek et al. 1998 and Acetobacter intermedius Boesch et al. 1998 to the genus Gluconacetobacter as Gluconacetobacter oboediens comb. nov. and Gluconacetobacter intermedius comb. nov. Int. J. Syst. Evol. Microbiol. 50, 2225-2227.

Cited by

  1. Adsorptive behavior of acrylic acid-grafted bacterial cellulose to remove cadmium for a membrane-adsorbent hybrid process vol.51, pp.25-27, 2013, https://doi.org/10.1080/19443994.2013.768369
  2. Heavy Metal Removal of Acrylic Acid-grafted Bacterial Cellulose in Aqueous Solution vol.23, pp.8, 2014, https://doi.org/10.5322/JESI.2014.23.8.1419