DOI QR코드

DOI QR Code

얼치기완두(콩과) 집단의 교배계와 내교잡 압력

Mating Systems and Inbreeding Pressure in Populations of Wild Lentil Tare, Vicia tetrasperm (Leguminosae)

  • 허만규 (동의대학교 분자생물학과)
  • Huh, Man-Kyu (Department of Molecular Biology, Dong-eui University)
  • 발행 : 2007.11.30

초록

한국 내 얼치기완두(Vicia tetrasperm) 집단의 교배계를 알로자임 분석으로 실시하였다. 그 결과 얼치기완두는 타가수분 또는 혼합 교배 타가수분을 영위하고 있었다. 집단 수준에서 열 개 집단에 대한 내교배 계수는 0.131에서 0.176까지로 나타나며 평균은 0.154였다. 다대립좌위에서 타가수분 계수(tm)는 열 개 집단에 대해 0.269와 0.423사이에 있으며 평균은 0.333이었다. 다대립좌위와 단일좌위에서 타가수분 계수 차이는 상당히 높게 나타났으며 양친과의 근친교배가 유의하게 일어나고 있었다. 일부 집단에서 낮은 타가수분율은 광범위한 근친교배와 성숙한 개체간 격리에 기인한다. 비록 한 집단에서 이형접합체 과다가 기록되었지만 대부분 집단은 이형접합체의 결핍이 관찰되었다. 따라서 동형접합체에 대한 자연선택이 생활사를 통한 지손집단에 작용하고 있었다.

The mating systems of natural populations of Vicia tetrasperm in Korea were determined using allozyme analysis. The result suggests that V. tetrasperm is low rates of outcrossing or mix-mating outcrossing (self-fertilization, s < 0.5). At the population levels, the values of inbreeding coefficient of ten populations in Korea varied from 0.131 to 0.176, giving an average 0.154. For ten natural populations, multi-locus estimates of outcrossing (tm) was 0.333 across fifteen polymorphic loci, with individual population values ranging from 0.269 to 0.423. The differences between the tm and ts values were not close to zero (tm - ts > 0.154), indicating that biparental inbreeding was significant in the loci. The reason for relatively low outcrossing rates of some populations could be attributed to extensive consanguineous mating and isolation of flowering mature plants. Although heterozygote excess was observed in one natural population, most populations exhibited varying degrees of inbreeding and heterozygotes deficit. Thus, selection against homozygotes operated in the progeny populations throughout the life cycle.

키워드

참고문헌

  1. Amet, T. A. 1986. Geographical patterns of allozyme variation in a germplasm collection of faba bean (Vicia faba L.). FABIS Newsletter 16, 5-12.
  2. Bassri, A. and I. Rouhani. 1977. Identification of broadbean cultivars based on isoenzyme patterns. Euphytica 26, 279-286. https://doi.org/10.1007/BF00026989
  3. Escalante, A. M., G. Coello and L. E. Eguiarte. 1994. Genetic structure and mating systems in wild and cultivated populations of Phaseolus coccineus and P. vulgaris (Fabaceae). Am. J. Bot. 81, 1096-1103. https://doi.org/10.2307/2445471
  4. Heywood, J. C. 1993. Biparental inbreeding depression in the self-incompatible annual plant Gaillardia pulchella (Asteraceae). Am. J. Bot. 80, 545-550. https://doi.org/10.2307/2445370
  5. Holsinger, K. E. 1991. Mass-action models of plant mating systems: the evolutionary stability of mixed mating systems. Am. Nat. 138, 606-622. https://doi.org/10.1086/285237
  6. Jaasaka, V. 1997. Isozyme diversity and phylogenetic affinities in Vicia subgenus Vicia (Fabaceae). Genet. Res. Crop Evol. 44, 557-574. https://doi.org/10.1023/A:1008630003045
  7. Kaser, H. R. and A. M. Steiner. 1983. Subspecific classification of Vicia faba L. by protein and isozyme patterns. FABIS Newslett 7, 19-20.
  8. Leonards, C. and H. P. Muller. 1990. Populationsgenetik und artenshutz- Untersuchungen zur genetischen Variabilitat in Wild populationen der Gattung Vicia in Rheinland und in der Eifel. Dechenia 143, 196-208.
  9. Li, C. C. and D. G. Horvitz. 1953. Some methods of estimating the inbreeding coefficient. Am. J. Hum. Genet. 5, 107-117.
  10. Liengsiri, C., T. J. B. Boyle and F. C. Yeh. 1998. Mating system in Pterocarpus macrocarpus Kurz in Thailand. J. Hered. 89, 216-221. https://doi.org/10.1093/jhered/89.3.216
  11. Maki, M. 1993. Outcrossing and fecundity advantage of females in gynodiecious Chiongraphis japonica var. eurohimensis (Liliaceae). Am. J. Bot. 80, 629-634. https://doi.org/10.2307/2445432
  12. Mancini, R., C. De Pace, G. T. Scaracia-Mugnozza, V. Delre, and D. Vittori. 1989. Isozyme genetic markers in Vicia faba L. Theor. Appl. Genet. 77, 657-667. https://doi.org/10.1007/BF00261239
  13. Murawski, D. A., B. Dayanandan and K. S. Bawa. 1994. Outcrossing rates of two endemic Shorea species from Sri Lankan tropical rain forests. Biotrppica 26, 23-29. https://doi.org/10.2307/2389107
  14. Nei, M., T. Murawama and R. Chakraborty. 1975. The bottleneck effect and genetic variability in populations. Evolution 29, 1-10. https://doi.org/10.2307/2407137
  15. Potokina, E. K., N. Tomooka, D. A. Vaughan, T. Alexandrova and R. Q. Xu. 1999. Phylogeny of Vicia subgenus (Fabaceae) based on analysis of RAPDs and RFLP of PCR-amplified chloroplast genes. Genet. Res. Crop Evol. 46, 149-161. https://doi.org/10.1023/A:1008640322198
  16. Przybylska, J., Z. Zimniak-Przybylska and P. Krajewski. 1992. Isozyme variation in the genetic resources of Vicia faba L. Genet. Polon. 33, 17-25.
  17. Ritland, K. 1990. A serious of FORTRAN computer programs for estimating plant mating systems. J. Hered. 81, 235-237.
  18. Ritland, K. and S. Jain. 1981. A model for the estimation of outcrossing rate and gene frequencies using n independent loci. Heredity 47, 35-52. https://doi.org/10.1038/hdy.1981.57
  19. Riberiro, R. A and M. B. Lovato. 2004. Mating system in a neotropical tree species, Senna multijuga (Fabaceae). Genet. Mol. Biol. 27, 418-424. https://doi.org/10.1590/S1415-47572004000300018
  20. Soltis, D. E., H. Haufler, D. C. Darrow and G. J. Gastony. 1983. Starch gel electrophoresis of ferns: A complication of grinding buffers, gel and electrode buffers, and staining schedules. Am. Fern J. 73, 9-27. https://doi.org/10.2307/1546611
  21. Suso, M. J., M. T. Moreno and J. I. Cubero. 1993. New isozyme markers in Vicia faba - Inheritance and linkage. Plant Breed. 111, 170-172. https://doi.org/10.1111/j.1439-0523.1993.tb00625.x
  22. Torres, A. M., Z. Satovic, J. Canovas, S. Cobos and J. I. Cubero. 1995. Genetics and mapping of new isozyme loci in Vicia faba L. using trisomics. Theor. Appl. Genet. 91, 783-789.
  23. Uyenoyama, M. K. 1986. Inbreeding and the cost of meiosis: the evolution of selfing in population practicing biparental inbreeding. Evolution 40, 388-404. https://doi.org/10.2307/2408817
  24. Weber, L. H. and M. T. Schifino-Wittmann. 1999. The Vicia sativa L. aggregate (Fabaceae) in Southern Brazil. Genet. Res. Crop Evol. 46, 207-211. https://doi.org/10.1023/A:1008657615898
  25. Weeden, N. F. and J. F. Wendel. 1989. Genetics of plant isozymes, pp. 42-72, In Soltis, D. E. and P. S. Soltis (eds.), Isozymes in Plant Biology, Dioscorides Press, Portland.
  26. Wright, S. 1965. The interpretation of population structure by F-statistics with special regard to systems of mating. Evolution 19, 395-420. https://doi.org/10.2307/2406450
  27. Yamamoto, K. 1986. Interspecific hybridization among Vicia narbonensis and its related species. Biol. Zbl. 105, 181-187.
  28. Yamamoto, K. and U. Plitmann. 1980. Isozyme polymorphism in species of the genus Vicia (Leguminosae). Japan. J. Genet. 55, 151-164. https://doi.org/10.1266/jjg.55.151