DOI QR코드

DOI QR Code

Genetic Evolution and Characteristics of Ichthyotoxic Cochlodinium polykrikoides(Gymnodiniales, Dinophyceae)

어류치사성 Cochlodinium polykrikoides 적조생물의 유전적 진화 및 특성

  • 조은섭 (국립수산과학원 남해수산연구소) ;
  • 정창수 (국립수산과학원 남해수산연구소)
  • Published : 2007.11.30

Abstract

This study presents a molecular phylogenetic analysis of the harmful dinoflagellate Cochlodinium polykrikoides, by use of partial sequence of small subunit (SSU) rRNA gene from most of the major taxa(24 species) in dinoflagellates. The class Dinophyceae clade formed a strong monophyletic relationship with C. polykrikoides and several taxa. On the basis of deeper nodes, the phylogenetic relationships placed C. polykrikoides closer to the order Prorocentrales rather than to the order Gymnodiniales, which was supported by a strong bootstrap value (100%) in the analyses of Neighbor-Joining and Parsimony methods. There is strong support for C. polykrikoides being placed in the same branch as Gymnodiniaceae and being connected in a clade with Prororcentrum micans among Prorocentrales. Morphological data show that C. polykrikoides is well associated with the genus Gyrodinium; however, this species is genetically closer to Gymnodinium than to Gyrodinium. The placement of C. polykrikoides always formed an independent branch separated from other dinoflagellates. In conclusion, planktonic P. micans plays an important role as an ancestor of Gymnodinium, whereas C. polykrikoides appears to be used an intermediate position between P. micans and Gymnodinium based on evolution.

본 연구는 유해성 적조생물인 Cochlodinium polykrikoides의 유전적 계통진화를 설명하기 위하여 24 종의 개체에 대한 SSU을 대상으로 분석했다. C. polykrikoides는 와편모조류와 밀접한 단일 계통군을 형성하고 있다. Neighbor-joining 혹은 parsimony 분석에 의하면 C. polykrikoides는 Gymnodiniales 보다 Prorocentrals 목 (order)에 훨씬 근접한 100% 유연관계를 보이고 있으며, 과 (family)로 분석해 보면 Gymnodiniaceae에 속해 있고, 특히 Prorocentrum micans와는 매우 밀접한 관계를 보이고 있다. 형태적으로는 Gyrodinium속 (genus)에 가깝지만, 유전적으로는 Gymnodinium 속에 근접하고 있다. C. polykrikoides는 와편모조류 중에서 독립적인 계통군을 유지하고 있다. 따라서 p. micans는 Gymnodinium의 조상으로 추측되며, C. polykrikoides는 P. micans와 Gymnodinium 속의 중간단계인 것으로 보인다.

Keywords

References

  1. Anderson, D. M. 1990. Toxin variability in Alexandrium species. pp. 41-51, In Graneli, E., B. Sundstrom, B. Edler and D. M. Anderson (eds.), Toxic marine phytoplankton, Elsevier, New York.
  2. Asahida, T., T. Kobayashi, K. Saitoh and I. Nakayama. 1996. Tissue preservation and total DNA extraction from fish stored at ambient temperature using buffers containing high concentration of urea. Fish Sci. 62, 727-730. https://doi.org/10.2331/suisan.62.727
  3. Cachon, J., T. Berman and N. Cohen. 1987. Parasitic dinoflagellates. pp. 571-610, In Taylor, F. J. R. (ed.), The biology of Dinoflagellates, Blackwell Scientific Publications, Oxford.
  4. Cho, E. S., C. S. Kim, S. G. Lee and Y. G. Chung. 1999. Binding of alcian blue applied to harmful microalgae from Korean coastal waters. Bull. Nat. Fish. Res. Dev. Agency 55, 133-138.
  5. Cho, E. S., G. Y. Kim and Y. C. Cho. 2001. Molecular analysis of morphologically similar dinoflagellates Cochlodinium polykrikoides, Gyrodinium impudicum and Gymnodinium catenatum based internal transcribed spacer and 5.8S rDNA regions. Algae 16, 53-57.
  6. Cho, E. S., G. Y. Kim, B. D. Choi, L. L. Rhodes, T. J. Kim, G. H. Kim and J. D. Lee. 2001. A comparative study of the harmful dinoflagellates Cochlodinium polykrikoides and Gyrodinium impudicum using transmission electron microscopy, fatty acid composition, carotenoid content, DNA quantification and gene sequences. Bot. Mar. 44, 57-66. https://doi.org/10.1515/BOT.2001.008
  7. Cho, E. S., G. Y. Kim, H. S. Park, B. H. Nam and J. D. Lee. 2001. Phylogenetic relationship among several Korean coastal red tide dinoflagellates based on their rDNA internal transcribed spacer sequences. Kor. J. Life Sci. 11, 74-80
  8. Daugbjerg, N., G. Hansen, J. Larsen and O. Moestrup. 2000. Phylogeny of some of the major genera of dinoflagellates based on ultrastructure and partial LSU rDNA sequence data, including the erection of 3 new genera of unarmoured dinoflagellates. Phycologia 38, 302-317.
  9. de Salas, M. F., C. J. S. Bolch, L. Botes, G. Nash, S. W. Wright and G. M. Hallegraeff. 2003. Takayama gen. nov. (Gymnodiniales, Dinophyceae), a new genus of unarmored dinoflagellates with sigmoid apical grooves, incuding the description of two new specices. J. Phycol. 39, 1233-1246. https://doi.org/10.1111/j.0022-3646.2003.03-019.x
  10. Dodge, J. D. 1984. Dinoflagellate taxonomy. pp. 17-42, In Spector, D. L. (ed.), Dinoflagellate, Academic Press, New York.
  11. Dodge, J. D. 1989. Phylogenetic relationships of dinoflagellates and their plastids. pp. 207-227, In Green, J. C., B. S. C. Leadbeater and W. I. Diver (eds.), The chromophyte algae: problems and perspectives, The Systematics Association special volume no. 38, Clarendon Press, Oxford.
  12. Falkowski, P. G., M. E. Katz, A. H. Knoll, A. Quigg, J. A. Raven, O. Schofield and F. J. R. Taylor. 2004. The evolution of modern eurkayotic phytoplankton. Science 305, 354-360. https://doi.org/10.1126/science.1095964
  13. Felsenstein, J. 1993. PHYLIP (Phylogeny Inference Package) version 3.5c. Department of Genetics, University of Washington, Seattle.
  14. Fensome, R. A., F. J. R. Taylor, G. Norris, W. A. S. Sarjeant, D. I. Wharton and G. L. Williams. 1993. A classification of living and fossil dinoflagellates. pp. 351, Micropaleontological Species Publication.
  15. Grzebyk, D., Y. Sako and B. Berland. 1998. Phylogenetic analysis of nine species of Prorocentrum (Dinophyceae) inferred from 18S ribosomal DNA sequences, morphological comparisons, and descrition of Prorocentum panamensis, sp. nov. J. Phycol. 34, 1055-1068. https://doi.org/10.1046/j.1529-8817.1998.341055.x
  16. Guillard, R. R. L. and J. H. Ryther. 1962. Studies of marine planktonic diatoms 1. Cyclotella nana Hustedt, and Detonula confervacea (Cleve) Gran. Can. J. Microbiol. 8, 229-239. https://doi.org/10.1139/m62-029
  17. Hackett, J. D., L. Maranda, H. S. Yoon and D. Bhattacharya. 2003. Phylogenetic evidence for the cryptophyte origin of the plastid of Dinophysis (Dinophysiales, Dinophyceae). J. Phycol. 39, 440-448. https://doi.org/10.1046/j.1529-8817.2003.02100.x
  18. Hallegraeff, G. M., D. M. Anderson and A. D. Cembella. 1995. Manual on harmful marine microalgae. pp. 551, IOC Manuals and Guides No. 33. UNESCO, Paris.
  19. Hansen, G., N. Daugbjerg and P. Henriksen. 2000. Comparative study of Gymnodinium mikimotoi and Gymnodinium aureolum, comb. Nov. (=Gyrdinium aureolum) based on morphology, pigment composition, and molecular data. J. Phycol. 36, 394-410. https://doi.org/10.1046/j.1529-8817.2000.99172.x
  20. Hansen, P. J. 1995. Growth and grazing response of a ciliate feeding on the red tide dinoflagellate Gyrodinium aureolum in monoculture and in mixture with a nontoxic alga. Mar. Ecol. Prog. Ser. 121, 65-72. https://doi.org/10.3354/meps121065
  21. Harper, J. T. and P. J. Keeling. 2003. Nucleus-encoded, plastid-targeted glyceraldehyde-3-phosphate dehydrogenase (GAPDH) indicates a single origin for chromalveolate plastids. Mol. Biol. Evol. 20, 1730-1735. https://doi.org/10.1093/molbev/msg195
  22. Hulburt, E. M. 1957. The taxonomy of unarmored Dinophyceae of shallow embayments of Cape Cod, Massachusetts. Biol. Bull. 112, 196-219. https://doi.org/10.2307/1539198
  23. Innis, M. A., D. H. Gelfamd, J. J. Sninsky and T. J. White. 1990. PCR protocls a guide to methods and applications. pp. 322, Academic Press.
  24. Ishida, Y., C. H. Kim, S. Yoshihiko, H. Nobuyasu and U. Aritsume. 1993. PSP toxin production is chromosome dependent in Alexandrium spp. pp. 881-887, In Smayda, T. J. and Y. Shimizu (eds.), Toxic marine phytoplankton, Elsevier, New York.
  25. Jeffrey, S. W. 1989. Chlorophyll c pigments and their distribution in the Chromophyte algae. pp. 13-36, In Green, J. C., B. S. C. Leadbeater and W. I. Diver (eds.), The chromophyte algae: problems and perspectives, The Systematics Association special volume no. 38, Clarendon Press, Oxford.
  26. Jeong, H. J., J. Y. Park, J. H. Nho, M. O. Park, J. H. Ha, K. A. Seong, C. Jeng, C. N. Seong, K. Y. Lee and W. H. Yih. 2005. Feeding by red-tide dinoflagellates on the cyanobacterium Synechococcus. Aqua. Micro. Ecol. 41, 131-143. https://doi.org/10.3354/ame041131
  27. Jeong, H. J., Y. D. Yoo, J. S. Kim, T. H. Kim, J. H. Kim, N. S. Kang and W. H. Yih. 2004. Mixotrophy in the phototrophic harmful alga Cochlodinium polykrikoides (Dinophycean): prey species, the effects of prey concentration, and grazing impact. J. Eukaryot. Microbiol. 51, 563-569. https://doi.org/10.1111/j.1550-7408.2004.tb00292.x
  28. Keeling, P. J., J. M. Archibald, N. M. Fast and J. D. Palmer. 2004. The evolution of modern eukaryotic phytoplankton. Science 306, 219-220.
  29. Kim, C. S., S. G. Lee and H. G. Kim. 2000. Biochemical responses of fish exposed to a harmful dinoflagellate Cochlodinium polykrikoides. J. Exp. Mar. Biol. Ecol. 254, 131-141. https://doi.org/10.1016/S0022-0981(00)00263-X
  30. Kim, H. G., S. G. Lee and K. H. An. eds. 1997. Recent red tides in Korean coastal waters. pp. 280, Kudeok Publishing, Busan.
  31. Kim, S. H., K. Y. Kim, C. H. Kim, W. S. Lee, M. Chang and J. H. Lee. 2004. Phylogenetic analysis of harmful algal bloom (HAB)-causing dinoflagellates along the Korean coasts, based on SSU rRNA gene. J. Microbiol. Biotechnol. 14, 959-966.
  32. Kimura, M. 1980. A simple method for estimating evolutionary rate of base substitution through comparative studies of nucleotide sequences. J. Mol. Evol. 116, 111-120.
  33. Kodama, M. 1990. Possible links between bacteria and toxin production in algal blooms. pp. 52-61, In Graneli, E., B. Sundstrom, L. Edler and D. M. Anderson (eds.), Toxic marine phytoplankton, Elsevier, Amsterdam.
  34. Koumandou, V. L., R. E. R. Nisbet, A. C. Barbrook and C. J. Howe. 2004. Dinoflagellate chloroplasts- where have all the genes gone? Trends in Genetics 20, 261-267. https://doi.org/10.1016/j.tig.2004.03.008
  35. Lee, S. G., J. S. Park and H. G. Kim. 1993. Taxonomy of marine toxic flagellates occurring in the southern coastal waters of Korea. Bull. Nat. Fish. Res. Dev. Agency 48, 1-23.
  36. Lenaers, G., L. Maroteaux, B. Michot and M. Herzog. 1989. Dinoflagellates in evolution. A molecular phylogenetic analysis of large-subunit ribosomal RNA. J. Mol. Evol. 29, 40-51. https://doi.org/10.1007/BF02106180
  37. Loeblich, A. R. 1976. Dinoflagellate evolution: speculation and evidence. J. Proto. 23, 13-28. https://doi.org/10.1111/j.1550-7408.1976.tb05241.x
  38. Loeblich. A. R. 1984. Dinoflagellate evolution. pp. 481-522, In Spector, D. L. (ed.), Dinoflagellate, Academic Press, New York.
  39. Park, J. G.. and Y. S. Park. 1999. Comparison of the morphological characteristics and the 24S rRNA sequences of Cochlodinium polykrikoides and Gyrodinium impudicum. The Sea 4, 363-370.
  40. Partensky, F., D. Vaulot, A. Coute and A. Sournia. 1988. Morphological and nuclear analaysis of the bloom-forming dinoflagellates Gyrodinium cf. aureolum and Gymnodinium nagasakiense. J. Phycol. 24, 408-415.
  41. Saitou, N. and M. Nei. 1987. The neighbor-joining method: A new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 4, 406-425.
  42. Santos, S. R., D. J. Taylor, R. A. Kinzie, M. Hidaka, K. Sakai. and M. A. Coffroth. 2002. Molecular phylogeny of symbiotic dinoflagellates inferred from partial chloroplast large subunit (23S) rDNA sequences. Mol. Phylo. Evol. 23, 97-111. https://doi.org/10.1016/S1055-7903(02)00010-6
  43. Takayama, H. and R. Adachi. 1984. Gymnodinium nagasakiense sp. nov., a red-tide blooming dinophyte in the adjacent waters of Japan. Bull. Plank. Soc. Jpn. 31, 7-14.
  44. Takayama, H. and K. Matsuoka. 1991. A reassessment of the specific characters of Gymnodinium mikimotoi Miyake et Kominami et Oda and Gymnodinium nagasakiense Takayama et Adachi. Bull. Plank. Soc. Jpn. 38, 53-68.
  45. Takishita, K., K. Ishida, M. Ishikura and T. Maruyama. 2005. Phylogeny of the psbC gene, coding a photosystem II component CP43, suggests separate origins for the peridinin- and fucoxanthin derivative-containing plastids of dinoflagellates. Phycologia 44, 26-34. https://doi.org/10.2216/0031-8884(2005)44[26:POTPGC]2.0.CO;2
  46. Takishita, K., K. Ishida and T. Maruyama. 2004. Phylogeny of nuclear-encoded plastid-targeted GAPDA gene supports separate origins for the peridinin- and the fucoxanthin derivative-containing plastids of dinoflagellates. Protist 155, 447-458. https://doi.org/10.1078/1434461042650325
  47. Takishita, K., M. Ishikura, K. Koike and T. Maruyama. 2003. Comparison of phylogenies based on nuclear-encoded SSU rDNA and plastid-encoded psbA in the symbiotic dinoflagellate genus Symbiodinium. Phycologia 42, 285-291. https://doi.org/10.2216/i0031-8884-42-3-285.1
  48. Taylor, F. J. R. 1980. On dinoflagellate evolution. Biosystems 13, 65-108. https://doi.org/10.1016/0303-2647(80)90006-4
  49. Taylor, F. J. R. 1979. Symbionticism revisited: a discussion of the evolutionary impact of intracellular symbioses. Proc. R. Soc. Lond. B. 204, 267-286. https://doi.org/10.1098/rspb.1979.0027
  50. Taylor, F. J. R. 1985. The taxonomy and relationships of red tide dinoflagellates. pp. 11-26, In Anderson, D. M., A. W. White and D. C. Baden (eds.), Toxic Dinoflagellates, Elsevier, New York.
  51. Thomson, J. D., D. G. Higgins and T. J. Gibson. 1994. Clustal W: improving the sensitivity of progressive multiple sequences alignment through sequence weighting, positin-specific fap penalties and weight matrix choice. Nucleic Acids Res. 22, 4673-4680. https://doi.org/10.1093/nar/22.22.4673
  52. Yang, Z. B., H. Takayama, K. Matsuoka and I. J. Hodgkiss. 2000. Karenia digitata sp. nov. (Gymnodiniales, Dinophyceae), a new harmful algal bloom species from the coastal waters of west Japan and Hong Kong. Phycologia 39, 463-470. https://doi.org/10.2216/i0031-8884-39-6-463.1
  53. Yoon, H. S., J. D. Hackett and D. Bhattacharya. 2002. A single origin of the peridinin- and fucoxanthin-containing plastids in dinoflagellates through tertiary encosymbiosis. Proc. Natl. Acad. Sci. USA 99, 11724-11729. https://doi.org/10.1073/pnas.172234799
  54. Yoon, H. S., J. D. Hackett, C. Ciniglia, G. Pinto and D. Bhattacharya. 2004. A molecular timeline for the origin of photosynthetic eukaryotes. Mol. Biol. Evol. 21, 809-818. https://doi.org/10.1093/molbev/msh075
  55. Yoon, H. S., J. D. Hackett, G. Pinto and D. Bhattacharya. 2002. The single, ancient origin of chromist plastids. Proc. Natl. Acad. Sci. USA 99, 15507-15512. https://doi.org/10.1073/pnas.242379899
  56. Zardoya, R., E. Costas, V. Lopez-Rodas, A. Garrido- Pertierra and J. M. Bautista. 1995. Revised dinoflagellate phylogeny inferred from molecular analysis of large-subunit ribosomal RNA gene sequences. J. Mol. Evol. 41, 637-645.
  57. Zhang, Z., T. Cavalier-Smith and B. R. Green. 2001. A family of selfish minicircular chromosomes with jumbled chloroplast gene fragments from a dinoflagellate. Mol. Biol. Evol. 18, 1558-1565. https://doi.org/10.1093/oxfordjournals.molbev.a003942
  58. Zhang, Z., B. R. Green and T. Cavalier-Smith. 1999. Single gene circles in dinoflagellate chloroplast genome. Nature 400, 155-159. https://doi.org/10.1038/22099