DOI QR코드

DOI QR Code

Effects of Hambag Mushroom (Grifola frondosa)-Powder on Hyperglycemia and Hyperlipemia in STZ and High Fat Diet-induced Diabetic Rats

STZ 및 고지방식이에 의해 유도된 흰쥐의 고혈당 및 고지혈에 대한 함박잎새버섯분말의 효능

  • 이순이 (아시아대학교 뷰티주얼리디자인학과) ;
  • 박영철 (대구가톨릭대학교 바이오안전성센터) ;
  • 김종봉 (대구가톨릭대학교 자연대학 의생명과학과)
  • Published : 2007.10.30

Abstract

Hambag mushroom is edible mushroom, and one of new strains in Grifola frondosa. It was developed from Korean wild Grifola frondosa by National Institute Science & Technology. In this study, we investigated the effects of the powder extracted from fruit-body of hambag mushroom on hyperglycemia, hyperlipemia and pancreatic cells in rats with streptozotocin (STZ) and high fat diet-induced diabetes. The diabetic rats were fed with hambag mushroom-powder (1 and 2% of diet weight) for 6 weeks. And then the levels of blood glucose and lipid and the pancreatic tissue were analyzed and compared. The diabetic rats fed with hambag mushroom-powder lost less body weight than those fed with the powder-free normal diet. flood glucose levels in the diabetic rats fed with hambag mushroom-powder at all concentrations was lower by 50% than in the diabetic rats fed with normal diet. The levels of total cholesterol, triglyceride and LDL-cholesterol in the diabetic rats fed with hambag mushroom-powder were increased compared to those in the diabetic rats fed with normal diet. There were the blood levels of cholesterol, triglyceride and LDL-cholesterol by hambag mushroom-powder concentrations in a dose-dependent response. The decreased damage of pancreatic tissue in the group treated with hambag mushroom-powder could be suggested possibly as one of mechanisms for the effects of hambag mushroom-powder on hyperglycemia and hyperlipemia.

함박잎새버섯은 잎새버섯의 한 품종으로 농업과학기술원의 야생균주로부터 개량된 새로운 품종이다. 인공재배에 의하여 대량생산이 이루어지고 있다. Streptozotocin와 고지방식이에 의해 유도된 실험쥐 당뇨에 있어서 고혈당 및 고지질 혈에 대한 함박잎새버섯분말의 효능과 부분적인 기전을 6 주간의 사육기간을 통한 결과는 다음과 같다. 1. 함박잎새버섯분말 투여에 의한 체중증가량은 당뇨를 가진 실험쥐의 2 배로 분말이 당뇨에 의해 유도된 체중감소의 병폐현상을 막아주는 주는 역할을 하는 것으로 추정된다. 2. 함박잎새버섯분말 투여는 혈당을 약 200 mg/dl 정도 감소한 당뇨를 가진 실험쥐 혈당의 약 50% 수준이었다. 3. 당뇨 유발에 의해 증가된 Triglyceride, 총콜레스테롤, LDL-cholesterol의 함량은 함박잎새버섯분말 투여에 의해 용량-의존성 경향을 보이면서 감소되었다. 그러나 당뇨 유발에 의해 감소된 HDL-cholesterol 함량은 함박잎새버섯분말 투여에 의해 증가되었다. 4. 함박잎새버섯분말 투여에 의한 당뇨-유도성 췌장 손상정도가 감소하였으며 이러한 효능이 당뇨 유발 실험쥐에 있어서 고혈당과 고혈지질을 조절하는 부분적인 기전으로 이해된다.

Keywords

References

  1. Adachi Y., M. Okazaki and N. Ohno. 1994. Enhancement of cytokine production by macrophages stimulated with (1$\rightarrow$3)-beta-D-glucan, grifolan(Grn), isolated from Grifola frondosa. Biol. Pharm. Bull. 17(12), 1554-60. https://doi.org/10.1248/bpb.17.1554
  2. American Diabetes Association. 2000. Nutrition recommendation and principles for people with diabetes mellitus( Position Statement). Diabetes Care 23, S43-S46.
  3. Behall, K. M., D. J. Scholfield and J. G. Hallfrisch. 2002. Comparison of hormone and glucose response of overweight women to barley and oats. Tektran, USDA, Agricultural Research Service 2, 1-15.
  4. Cavallero, A., S. Empili, F. Brighenti and A. M. Stanca. 2002. High (1-3, 1-4)-b-D glucan barley fractions in bread making and their effects on human glycemic response. J. Cereal Sci. 36, 59-66. https://doi.org/10.1006/jcrs.2002.0454
  5. Cheung, P. C. and M. Y. Lee. 2000. Fractionation and characterization of mushroom dietary fiber (nonstarch polysaccharides) as potential nutraceuticals from sclerotia of Pleurotus tuber-regium (Fries) singer. J. Agric. Food Chem. 48, 3148-3151. https://doi.org/10.1021/jf000382s
  6. Cho, E. J., T. Yokozawa, H. Y. Kim, N. Shibahara and J. C. Park. 2004. Rosa rugosa attenuates diabetic oxidative stress in rats with streptozotocin-induced diabetes. Am. J. Chin. Med. 32(4), 487-496. https://doi.org/10.1142/S0192415X04002132
  7. Daly, A. 2007. Use of insulin and weight gain: optimizing diabetes nutrition therapy. Am. Diet. Assoc. 107(8), 1386-1393. https://doi.org/10.1016/j.jada.2007.05.004
  8. Degertekin, H., K. Aldamar, R. Yates, I. Chen, A. Ertan and R. Vaupel. 1986. Light and electron microscopic studies of diet-induced hepatic changes in mice. Acta. Anat(Basel). 125(3), 174-179. https://doi.org/10.1159/000146157
  9. Feingold, K. R., M. Arthur, A. Saleh, S. Mounzer and G. Carl. 1990. Small intestinal fatty acid synthesis is increased in diabetic rat. Endocrinology 127. 2247-2252. https://doi.org/10.1210/endo-127-5-2247
  10. Franois, B. 1996. Non-insulin dependent diabetes and reverse cholesterol transport. Athersclerosis 124(suppl), S39-S42. https://doi.org/10.1016/0021-9150(96)05855-8
  11. Fridwald, W. T., R. I. Levy and D. S. Fredrickson. 1972. Estimation of the concentration of the low-density lipoprotein cholesterol in plasma without use of the preparative ultracentrifuge. Clin. Chem. 18, 499-502.
  12. Grundy, S. M., G. J. Balady, M. H. Criqui, G. Fletcher, P. Greenland, L. F. Hiratzka, N. Houston-Miller, P. Kris- Etherton, H. M. Krumholz, J. LaRosa, I. S. Ockene, T. A. Pearson, J. Reed, S. C. Smith and R. Washington. 1997. When to start cholesterol-lowering therapy in patients with coronary heart disease: a statement for healthcare professionals from the American Heart Association task force on rick reduction. Circulation 95, 1683-1685. https://doi.org/10.1161/01.CIR.95.6.1683
  13. Hallfrish, J. G., D. J. Scholfield and K. M. Behall. 2003. Comprison of glucose and insulin and cholecystoinin responses. Appetite 18. 129-141.
  14. Hong L., M. Xun and W. Wutong. 2007. Anti-diabetic effect of an alpha-glucan from fruit body of maitake (Grifola frondosa) on KK-Ay mice. J. Pharm. Pharmacol. 59(4), 575-582. https://doi.org/10.1211/jpp.59.4.0013
  15. Hsu, C. H., Y. L. Liao, S. C. Lin, K. C. Hwang and P. J. Chou. 2007. The mushroom Agaricus Blazei Murill in combination with metformin and gliclazide improves insulin resistance in type 2 diabetes: a randomized, double- blinded, and placebo-controlled clinical trial. Altern. Complement Med. 13(1), 97-102. https://doi.org/10.1089/acm.2006.6054
  16. Kim, W. K., J. S. Kang, S. K. Kim and W. J. Lee. 2006. Effect of sea tangle poeder on the regulation of blood glucose level and body weight in STZ-induced diabetic rats. Diabete (korean Jounal) 30, 459-465. https://doi.org/10.4093/jkda.2006.30.6.459
  17. Kim, Y. W., K. H. Kim, H. J. Choi and D. S. Lee. 2005. Anti-diabetic activity of beta-glucans and their enzymatically hydrolyzed oligosaccharides from Agaricus blazei. Biotechnol. Lett. 27(7), 483-487. https://doi.org/10.1007/s10529-005-2225-8
  18. Knuckles, B. E., C. A. Hudson and M. M. Chiu. 1997. Effect of beta glucan barley fractions in high fibre and pasta. Cereal Foods World 42. 94-99.
  19. Ko, S. H., K. H. Yoon, S. H. Seo, J. M. Lee, K. W. Oh, A. S. Chang, H. S. Kim, Y. B. Ahn, H. S. Son, M. I. Kang, B. C. Cha, K. W. Lee, H. Y. Son, and S. K. Kand. 2000. The changes of expression of intermediate filament in pancreatic duct cells during proliferation and differentiation after 90% pancreatectomy in rats. Korean Journal of Internal medicine 57, 191-201.
  20. Kubo, K., H. Aoki and H. Nanba. 1994. Anti-diabetic activity present in the fruit body of Grifola frondosa (Maitake). I. Bio. Pharm. Bull. 17(8), 1106-1110. https://doi.org/10.1248/bpb.17.1106
  21. Levrat, M., M. Favier, C. Moundras, C. Rmsy, C. Demign and C. Morand. 1994. Role of dietary propionic acid and bile acid excretion in the hypocholesterolemic effects of oligosaccharides in rats. J. Nutr. 124, 531-538. https://doi.org/10.1093/jn/124.4.531
  22. Ohno, N., N. N. Miura, M. Nakajima and T. Yadomae. 2000. Antitumor 1,3-beta-glucan from cultured fruit body of Sparassis crispa. Biol. Pharm. Bull. 23(7), 866-872. https://doi.org/10.1248/bpb.23.866
  23. Randle, P. J. 1998. Regulatory interactions between lipids and carbohydrates: the glucose fatty acid cycle after 35 years. Diabetes Metab. Rev. 14(4), 263-283. https://doi.org/10.1002/(SICI)1099-0895(199812)14:4<263::AID-DMR233>3.0.CO;2-C
  24. Reeves, P. G., F. H. Nielsen and G. C. Fahey. 1993. AIN-93 purified diets for laboratory rodents final of the American Institute of Nutrition ad hoc writing committee on the reformulation of the Ain-76A rodent diet. J. Nutr. 123, 1939-1951. https://doi.org/10.1093/jn/123.11.1939
  25. Rivera, J. J., R. S. Blumenthal and D. J. Ashen. 2007. Low-density lipoprotein Cholesterol in high-risk asymptomatic individuals. Cardiometab. Syndr. 2, 49-52. https://doi.org/10.1111/j.1559-4564.2007.06108.x
  26. Sun, Q., N. Sekar, I. Goldwaser, E. Gershonov, M. Fridkin and Y. Shechter. 2000. Vanadate restores glucose 6-phosphate in diabetic rats: a mechanism to enhance glucose metabolism. Am. J. Physiol. Endocrinol. Metab. 279(2), E403-E410.
  27. Suzuki, N., K. Nishibori, Y. Oodaira, S. Kitamura, K. Michigami, K. Nagata, Y. Tatara, B. R. Lee and E. Ichishima. 2005. Grifolisin, a member of the sedolisin family produced by the fungus Grifola frondosa. Phytochemistry 66(9), 983-990. https://doi.org/10.1016/j.phytochem.2005.02.014
  28. Tovar, J. M., O. V. Bazaldua and R. S. Poursani. 2007. LDL levels in diabetes: how low should they go. J. Fam. Pract. 56, 634-640.
  29. Zhang, G., Y. Huang, Y. Bian, J. H. Wong and H. Wang. 2006. Hypoglycemic activity of the fungi Cordyceps militaris, Cordyceps sinensis, Tricholoma mongolicum, and Omphalia lapidescens in streptozotocin-induced diabetic rats. Appl. Microbiol. Biotechnol. 72(6), 1152-1156. https://doi.org/10.1007/s00253-006-0411-9

Cited by

  1. Inhibition of α-Glucosidase by a Semi-Purified Ethyl Acetate Fraction from Submerged-Liquid Culture of Agaricus blazei Murill vol.21, pp.11, 2011, https://doi.org/10.5352/JLS.2011.21.11.1579
  2. Effects of Medicinal Plant Water Extracts on Expression of Anti-diabetic Enzymes mRNA vol.42, pp.7, 2013, https://doi.org/10.3746/jkfn.2013.42.7.1008