Influence of SKF81297 on Catecholamine Release from the Perfused Rat Adrenal Medulla

  • Choi, Deok-Ho (Departments of Pharmacology, College of Medicine, Chosun University) ;
  • Cha, Jong-Hee (Departments of Biochemistry, College of Medicine, Chosun University) ;
  • Lim, Dong-Yoon (Departments of Pharmacology, College of Medicine, Chosun University)
  • 발행 : 2007.10.31

초록

The aim of the present study was to investigate the effects of 6-chloro-7,8-dihydroxy-1-phenyl-2,3,4,5-tetrahydro-1H-3-benzazepine(SKF81297), a selective agonist of dopaminergic $D_1$ receptor, on the secretion of catecholamines(CA) evoked by cholinergic stimulation and membrane-depolarization in the isolated perfused rat adrenal gland, and also to elucidate the mechanism involved. SKF81297($10{\sim}100{\mu}M$) perfused into an adrenal vein for 60 min produced dose- and time-dependent inhibition of CA secretory responses evoked by ACh(5.32 mM), high $K^+$(56 mM), DMPP($100{\mu}M$) and McN-A-343($100{\mu}M$). Also, in adrenal glands loaded with SKF81297($30{\mu}M$), the CA secretory responses evoked by Bay-K-8644($10{\mu}M$), an activator of L-type $Ca^{2+}$ channels and cyclopiazonic acid($10{\mu}M$), an inhibitor of cytoplasmic $Ca^{2+}$-ATPase were also inhibited. However, in the presence of the dopamine $D_1$ receptor antagonist, (R)-(+)-8-chloro-2,3,4,5-tetrahydro-3-methyl-5-phenyl-1H-benzazepine-7-ol(SCH23390, $3{\mu}M$), which is a selective antagonist of dopaminergic $D_1$ receptor, the inhibitory responses of SKF81297($30{\mu}M$) on the CA secretion evoked by ACh, high $K^+$, DMPP, McN-A-343, Bay-K-8644, and cyclopiazonic acid were significantly reduced. Collectively, these experimental results suggest that SKF81297 inhibits the CA secretion from the rat adrenal medulla evoked by cholinergic stimulation(both nicotininc and muscarinic receptors) and membrane depolarization. This inhibitory of SKF81297 seems to be mediated by stimulation of dopaminergic $D_1$ receptors located on the rat adrenomedullary chromaffin cells, which are relevant to extra- and intracellular calcium mobilization. Therefore, it is thought that the presence of the dopaminergic $D_1$ receptors may be involved in regulation of CA release in the rat adrenal medulla.

키워드

참고문헌

  1. Albillos A, Abad F, Garcia AG. Cross-talk between $M_2$ muscarinic and $D_1$ dopamine receptors in the cat adrenal medulla. Biochem Biophys Res Commun 183(3): 1019-1024, 1992 https://doi.org/10.1016/S0006-291X(05)80292-X
  2. Andersen PH, Jansen JA. Dopamine receptor agonists: selectivity and D1 receptor efficacy. Eur J Pharmacol 188: 335-347, 1990 https://doi.org/10.1016/0922-4106(90)90194-3
  3. Anton AH, Sayre DF. A study of the factors affecting the aluminum oxidetrihydroxy indole procedure for the analysis of catecholamines. J Pharmacol Exp Ther 138: 360-375, 1962
  4. Artalejo AR, Ariano MA, Perlman RL, Fox AP. Activation of facilitation calcium channels in chromaffin cells by $D_1$ dopamine receptors through a AMP/protein Kinase A-dependent mechanism. Nature 348: 239-242, 1990 https://doi.org/10.1038/348239a0
  5. Bigornia L, Allen CN, Jan CR, Lyon RA, Titeler M, Schneider AS. $D_2$ dopamine receptors modulate calcium channel currents and catecholamine secretion in bovine adrenal chromaffin cells. J Pharmacol Expt Ther 252(2): 586-592, 1990
  6. Bigornia L, Suozzo M, Ryan KA, Napp D, Schneider AS. Dopamine receptors on adrenal chromaffin cells modulate calcium uptake and catecholamine release. J Neurochem 51: 999-1006, 1988 https://doi.org/10.1111/j.1471-4159.1988.tb03060.x
  7. Cai G, Gurdal H, Smith C, Wang HY, Friedman E. Inverse agonist properties of dopaminergic antagonists at the $D_{1A}$ dopamine receptor: uncoupling of the $D_{1A}$ receptor from $G_s$ protein. Mol Pharmacol 56: 989-996, 1999 https://doi.org/10.1124/mol.56.5.989
  8. Catterall WA. Cellular and molecular biology of voltage-gated sodium channels. Physiol Rev 72(4 Suppl): S15-48, 1992 https://doi.org/10.1152/physrev.1992.72.suppl_4.S15
  9. Challiss RAJ, Jones JA, Owen PJ, Boarder MR. Changes in inositol 1,4,5-trisphosphate and inositol 1,3,4,5-tetrakisphosphate mass accumulations in cultured adrenal chromaffin cells in response to bradykinin and histamine. J Neurochem 56: 1083-1086, 1991 https://doi.org/10.1111/j.1471-4159.1991.tb02033.x
  10. Cheek TR, O'Sullivan AJ, Moreton RB, Berridge MJ, Burgoyne RD. Spatial localization of the stimulus-induced rise in cyrosolic $Ca^{2+}$ in bovine adrenal chromaffin cells: Distinct nicotinic and muscarinic patterns. FEBS Lett 247: 429-434, 1989 https://doi.org/10.1016/0014-5793(89)81385-7
  11. Collet AR, Story DF. Is catecholamine release from the rabbit adrenal gland subject to regulation through dopamine receptors or beta-adrenoceptors? Clin Exp Pharmacol Physiol 9: 436, 1982a
  12. Cooper DMF, Bier-Laning CM, Halford MK, Ahlijanian MK, Zahniser NR. Dopamine acting through $D_2$ receptors inhibits rat striatal adenylate cyclase by a GTP-dependent process. Mol Pharmacol 29: 113-119, 1986
  13. Corvol JC, Studler JM, Schonn JS, Girault JA, Herve D. $G_{{\alpha}olf}$ is necessary for coupling D1 and A2a receptors to adenylyl cyclase in the striatum. J Neurochem 76: 1585-1588, 2001 https://doi.org/10.1046/j.1471-4159.2001.00201.x
  14. Dahmer MK, Senogles SE. Differential inhibition of secretagogue- stimulated sodium uptake in adrenal chromaffin cells by activation of $D_4$ and $D_5$ dopamine receptors. J Neurochem 67:1960-1964, 1996 https://doi.org/10.1046/j.1471-4159.1996.67051960.x
  15. Dahmer MK, Senogles SE. Doparminergic inhibition of catecholamine secretion from chromaffin cells: Evidence that inhibition is mediated by $D_4$ and $D_5$ dopamine receptors. J Neurochem 66: 222-232, 1966 https://doi.org/10.1046/j.1471-4159.1996.66010222.x
  16. Damase-Michel C, Montastruc JL, Geelen G, Saint-Blanquat GD, Tran MA. Effect of quinpirole a specific dopamine DA2 receptor agonist on the sympathoadrenal system in dogs. J Pharmacol Expt Ther 252(2): 770-777, 1990
  17. Damase-Michel C, Montastruc JL, Tran MA. Effects of dopaminergic drugs on the sympathoadrenal system. Hypertens Res 18(Suppl 1): S119-124, 1995 https://doi.org/10.1291/hypres.18.119
  18. Damase-Michell C, Montastruc JL, Tran MA. Dopaminergic inhibition of catecholamine secretion from adrenal medulla is mediated by $D_2$-like but not $D_1$-like dopamine receptors. Clin Expt Pharmacol Physiol 26(Suppl): S67-S68, 1999
  19. Dearry A, Gingrich JA, Falardeau P, Fremeau RT, Bates JrMD, Caron MG. Molecular cloning and expression of the gene for a human dopamine $D_1$ receptor. Nature 347: 72-76, 1990 https://doi.org/10.1038/347072a0
  20. De Vliefer TA, Lodder JC, Werkman TR, Stoof JC. Dopamine receptor stimulation has multiple effects on ionic currents in neuroendocrine cells of the pond snail Lymnaea stagnalis. (Abstr) Neuroscience Lett 22(Suppl): S418, 1985
  21. Felder CC, Blecher M, Jose PA. Dopamine-1 mediated stimulation of phospholipase C activity in rat renal cortical membranes. J Biol Chem 264: 8739-8745, 1989a
  22. Fohr KJ, Ahnert-Hilger G, Stecher B, Scott J, Gratzl M. GTP and $Ca^{2+}$ modulate the inositol 1,4,5-trisphosphate-dependent $Ca^{2+}$ release in streptolysin O-permeabilized bovine adrenal chromaffin cells. J Neurochem 56: 665-670, 1991 https://doi.org/10.1111/j.1471-4159.1991.tb08201.x
  23. Forsberg EJ, Rojas E, Pollard HP. Muscarinic receptor enhancement of nicotinic-induced catecholamine secretion may be mediated by phosphoinositide metabolism in bovine adrenal chromaffin cells. J Biol Chem 261: 4915-4920, 1986
  24. Garcia AG, Sala F, Reig JA, Viniegra S, Frias J, Fonteriz R, Gandia L. Ihydropyridine Bay-K-8644 activates chromaffin cell calcium channels. Nature 309: 69-71, 1984 https://doi.org/10.1038/309069a0
  25. Gessa L, Canu A, Del Zompo M, Burrai C, Serra G. Lack of acute antipsychotic effect of SCH23390, a selective dopamine $D_1$ receptor antagonist. Lancet 337: 854-855, 1991
  26. Ghosh A, Greenberg ME. Calcium signaling in neurons: molecular mechanisms and cellular consequences. Science 268(5208): 239- 247, 1995 https://doi.org/10.1126/science.7716515
  27. Goeger DE, Riley RT. Interaction of cyclopiazonic acid with rat skeletal muscle sarcoplasmic reticulum vesicles. Effect on $Ca^{2+}$ binding and $Ca^{2+}$ permeability. Biochem Pharmacol 38: 3995-4003, 1989 https://doi.org/10.1016/0006-2952(89)90679-5
  28. Gonzales MC, Artalejo AR, Montiel C, Hervas PP, Garcia AG. Characterization of a dopaminergic receptor that modulates adrenomedullary catecholamine release. J Neurochem 47: 382-388, 1986 https://doi.org/10.1111/j.1471-4159.1986.tb04513.x
  29. Hammer R, Giachetti A. Muscarinic receptor subtypes: $M_1$ and $M_2$ biochemical and functional characterization. Life Sci 31: 2992-2998, 1982
  30. Holz RW, Senter RA, Frye RA. Relationship between $Ca^{2+}$ uptake and catecholamine secretion in primary dissociated cultures of adrenal modulla. J Neurochem 39: 635-640, 1982 https://doi.org/10.1111/j.1471-4159.1982.tb07940.x
  31. Huettl P, Gerhardt GA, Browning MD, Masserano JM. Effects of dopamine receptor agonists and antagonists on catecholamine release in bovine chromaffin cells. J Pharmacol Expt Ther 257(2): 567-574, 1991
  32. Jin LQ, Wang HY, Friedman E. Stimulated D1 dopamine receptors couple to multiple $G_{\alpha}$ proteins in different brain regions. J Neurochem 78: 981-990, 2001 https://doi.org/10.1046/j.1471-4159.2001.00470.x
  33. Kebabian JW, Agui T, van Oene JC, Shigematsu K, Saavedra JM. The D1 dopamine receptor: new perspectives. Trens Pharmacol Sci 7: 96-99, 1986 https://doi.org/10.1016/0165-6147(86)90272-5
  34. Kim KT, Weathead EW. Cellular responses ot $Ca^{2+}$ from extracellular and intracellular sources are different as shown by simulataneous measurements of cytosolic $Ca^{2+}$ and secretion from bovine chromaffin cells. Proc Natl Acad Sci USA 86: 9881-9885, 1989
  35. Kujacic M, Carlsson A. In vivo activity of tyrosine hydroxylase in rat adrenal glands following administration of quinpirole and dopamine. Eur J Pharmacol 278(1): 9-15, 1995 https://doi.org/10.1016/0014-2999(95)00092-Y
  36. Lewis MM, Watts VJ, Lawler P, Nichols E, Mailman RB. Homologous desensitization of the $D_{1A}$ dopamine receptor: efficacy in causing desensitization dissociates from both receptor occupancy and functional potency. J Pharmacol Exp Ther 286: 345-353, 1998
  37. Lim DY, Kim CD, Ahn KW. Influence of TMB-8 on secretion of catecholamines from the perfused rat adrenal glands. Arch Pharm Res 15(2): 115-125, 1992 https://doi.org/10.1007/BF02974085
  38. Lim DY, Kim KH, Choi CH, Yoo HJ, Choi DJ, Lee EH. Studies on secretion of catecholamines evoked by metolclopramide of the rat adrenal gland. Korean J Pharmacol 25(1): 31-42, 1989
  39. Lim DY, Yoon JK, Moon B. Interrelationship between dopaminergic receptors and catecholamine secretion from the rat adrenal gland. Korean J Pharmacol 30(1): 87-100, 1994
  40. Lyon RA, Titeler M, Bigornia L, Schneider AS. D2 dopamine receptors on bovine chromaffin cell membranes: identification and characterization by [$^3H$] N-methylspiperone binding. J Neurochem 48: 631-635, 1987 https://doi.org/10.1111/j.1471-4159.1987.tb04139.x
  41. Malgaroli A, Vallar L, Elahi FR, Pozzan T, Spada A, Meldolesi J. Dopamine inhibits cytosolic $Ca^{2+}$ increases in rat lactotroph cells. J Biol Chem 262: 13920-13927, 1987
  42. McGehee DS, Role LW. Physiological diversity of nicotinic acetylcholine receptors expressed by vertebrate neurons. Annu Rev Physiol 57: 521-546, 1995 https://doi.org/10.1146/annurev.ph.57.030195.002513
  43. Memo M, Carboni E, Trabucchi M, Carruba MO, Spano PF. Dopamine inhibition of neurotensin-induced increase in $Ca^{2+}$ influx intro rat pituitary cells. Brain Res 347: 253-257, 1985 https://doi.org/10.1016/0006-8993(85)90184-2
  44. Neve KA, Neve RL. The Dopamine Receptors. Humana Press, New Jersey, NJ, p 27-76, 1997
  45. O'Boyle KM, Gaitanopoulos DE, Brenner M, Waddington JL. Agonist and antagonist properties of benzazepine and thienopyrine derivates at the $D_1$ dopamine receptor. Neuropharmacology 28: 401-405, 1989 https://doi.org/10.1016/0028-3908(89)90036-1
  46. Quick M, Bergeron L, Mount H, Philte J. Dopamine $D_2$ receptor binding in adrenal medulla: charadcterization using [$^3H$] spiperone. Biochem Pharmacol 36: 3707-3713, 1987 https://doi.org/10.1016/0006-2952(87)90024-4
  47. Sawaguchi T, Goldman-Rakic PS. $D_1$ dopamine receptors in prefrontal cortex: Involvement in working memory. Science 251: 947 -950, 1991 https://doi.org/10.1126/science.1825731
  48. Schoors DF, Vauquelin GP, De Vos H, Smets G, Velkeniers B, Vanhaelst L, Dupont AG. Identification of a $D_1$ dopaminergic receptor, not linked to adenylate cyclase, on lactotroph cells. Br J Pharmacol 103(4): 1928-1934, 1991 https://doi.org/10.1111/j.1476-5381.1991.tb12354.x
  49. Seamans JK, Floresco SB, Phillips AG. Selective impairment on a delayed radial arm task following local administration of a $D_1$, but not a $D_2$, antagonist into the prefrontal cortex. Soc Neurosci Abstr 21: 1942, 1995
  50. Seidler NW, Jona I, Vegh N, Martonosi A. Cyclopiazonic acid is a specific inhibitor of the $Ca^{2+}$-ATPase of sarcoplasimc reticulum. J Biol Chem 264: 17816-17823, 1989
  51. Sigala S, Missale C, Tognazzi N, Spano P. Differential gene expression of dopamine $D_2$ receptor subtypes in rat chromaffin cells and sympathetic neurons in culture. Neuroreport 11(11): 2467-2471, 2000 https://doi.org/10.1097/00001756-200008030-00025
  52. Sorimachi M, Yamagami K, Nishimura S. A muscarinic receptor agonist mobilizes $Ca^{2+}$ from caffein and inositol-1,4,5-trisphosphate-sensitive $Ca^{2+}$ stroes in cat adrenal chromaffin cells. Brain Res 571: 154-158, 1992 https://doi.org/10.1016/0006-8993(92)90523-C
  53. Suzuki M, Muraki K, Imaizumi Y, Watanabe M. Cyclopiazonic acid, an inhibitor of the sarcoplasmic reticulum $Ca^{2+}$-pump, reduces $Ca^{2+}$-dependent $K^+$ currents in guinea-pig smooth muscle cells. Br J Pharmacol 107: 134-140, 1992 https://doi.org/10.1111/j.1476-5381.1992.tb14475.x
  54. Swope SL, Moss SJ, Blackstone CD, Huganir RL. Phosphorylation of ligand-gated ion channels: a possible mode of synaptic plasticity. FASEB J 6(8): 2514-2523, 1992 https://doi.org/10.1096/fasebj.6.8.1375568
  55. Tallarida RJ, Murray RB. Manual of pharmacologic calculation with computer programs. 2nd ed. New York, Speringer-Verlag, p 132, 1987
  56. Uceda G, Artalejo AR, Lopez MG, Abad F, Neher E, Garcia AG. $Ca^{2+}$-activated $K^+$ channels modulated muscarinic secretion in ca chromaffin cells. J Physiol 454: 213-230, 1992 https://doi.org/10.1113/jphysiol.1992.sp019261
  57. Undie AS, Friedman E. Stimulation of a dopamine $D_1$ receptor enhances inositol phosphates formation in rat brain. J Pharmacol Exp Ther 253: 987-992, 1990
  58. Vallar L, Meldolesi J. Mechanisms of signal transduction at the dopamine $D_2$ receptor. Trends Pharmacol Sci 10(2): 74-77, 1989 https://doi.org/10.1016/0165-6147(89)90082-5
  59. Wada A, Takara H, Izumi F, Kobayashi H, Yanagihara N. Influx of $^{22}Na$ through acetylcholine receptor-associated Na channels: relationship between $^{22}Na$ influx, $^{45}Ca$ influx and secretion of catecholamines in cultured bovine adrenal medulla cells. Neuroscience 15(1): 283-292, 1985 https://doi.org/10.1016/0306-4522(85)90135-6
  60. Wakade AR. Studies on secretion of catecholamines evoked by acetylcholine J Physiol 313: 463-480, 1981 https://doi.org/10.1113/jphysiol.1981.sp013676
  61. Williams GV, Goldman-Rakic PS. Blockade of dopamine $D_1$ receptors enhances memory fields of prefrontal neurons in primate cerebral cortex. Nature 376: 572-575, 1995 https://doi.org/10.1038/376572a0
  62. Zahrt J, Taylor JR, Arnsten AFT. Supranormal stimulation of dopamine $D_1$ receptors in the prefrontal cortex impairs spatial working memory in rats. Soc Neurosci Abstr 22: 1128, 1996
  63. Zhou QY, Grandy DK, Thambi L, Kushner LA, Van Tol HHM, Cone R, Pribnow D, Salon J, Bunzow JR. Cloning and expression of human and rat $D_1$ dopamine receptors. Nature 347: 76-80, 1990 https://doi.org/10.1038/347076a0
  64. Zhuang X, Belluscio L, Hen R. $Golf{\alpha}$ mediates dopamine $D_1$ receptor signaling. J Neurosci 20: 1-5, 2000 https://doi.org/10.1523/JNEUROSCI.20-01-00001.2000