3차원 데이터상에 영상등록을 위한 카메라 외부표정 계산

Camera Exterior Orientation for Image Registration onto 3D Data

  • Chon, Jae-Choon (Electrical Engineering and Computer Sciences, University of California Berkely) ;
  • Ding, Min (Electrical Engineering and Computer Sciences, University of California Berkely) ;
  • Shankar, Sastry (Electrical Engineering and Computer Sciences, University of California Berkely)
  • 발행 : 2007.10.31

초록

본 논문에서는 3차원 점군, 3차원 벡터 또는 3차원 곡면에 영상등록하는 새로운 방법을 제안 하였다. 제안한 방법은 카메라 위치와 3차원 직선, 2차원 영상 직선을 각각 지나는 평면의 법선벡터의 일치화를 통하여 카메라 외부표정을 추정하는 것이다. 법선벡터 일치화의 조건은 각 법선벡터 쌍의 사잇각이 제로가 되는 것이다. 이 조건은 벡터내적인 수학식으로 표현 된다. 시뮬례이션을 통하여 제안한 방법이 영상등록을 위한 외부표정 추정을 강인하게 하는 것을 증명하였다.

A novel method to register images onto 3D data, such as 3D point cloud, 3D vectors, and 3D surfaces, is proposed. The proposed method estimates the exterior orientation of a camera with respective to the 3D data though fitting pairs of the normal vectors of two planes passing a focal point and 2D and 3D lines extracted from an image and the 3D data, respectively. The fitting condition is that the angle between each pair of the normal vectors has to be zero. This condition can be represented as a numerical formula using the inner product of the normal vectors. This paper demonstrates the proposed method can estimate the exterior orientation for the image registration as simulation tests.

키워드

참고문헌

  1. Ahn, Chung-Hyun, Seong-Ik Cho, and Jaechoon Chon (2001), Ortho-rectification software applicable for IKONOS high resolutionimages: GeoPixel-Ortho, IGARSS 2001, pp. 555-557, Sydney 2001
  2. Christy, S. and R. Horaud (1999), Iterative pose computation from line correspondences. CVIU, Vol. 73, No. 1, pp. 137-144 https://doi.org/10.1006/cviu.1998.0717
  3. Fleishman S., D. C. Tel-Aviv, and C. T. Silva (2005), Robust moving least-squares fitting with sharp features, ACM SIGGRAPH 2005, pp. 544-552, Los Angeles, California
  4. Frueh, Christian and Avideh Zakhor (2003), Constructing 3D City Models by Merging Ground-Based and Airborne Views, IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR '03), Vol. 2, pp. 562-569
  5. Lowe, David G. (1991), Fitting parameterized three-dimensional models to images, IEEE Tr. on PAMI, Vol. 13, No.5, pp. 441-450 https://doi.org/10.1109/34.134043
  6. Neumann, Ulrich, Suya You, Jinhui Hu, Bolan Jiang, and JongWeon LeeU (2003), Augmented Virtual Environments (AVE): Dynamic Fusion of Imagery and 3D Models, Virtual Reality 2003, pp. 61-67
  7. Oberkampf D., D. DeMenthon, and L. Davis (1999), Iterative pose estimation using coplanar feature points. CVGIP, 63(3)
  8. Sequiera, V., K. Ng, E. Wolfart, J. Concalves, and D. Hogg (1999), 'Automated reconstruction of 3D models from real environments,' ISPRSJ. Photogrammetry Remote Sensing, Vol. 54, pp. 1-22 https://doi.org/10.1016/S0924-2716(98)00026-4
  9. Stamos, I. and P. Allen (2002), Geometry and Texture Recovery of Scenes of Large Scale, CVIU, Vol. 88, pp. 94-118 https://doi.org/10.1006/cviu.2002.0963
  10. Quan L. and Z. Lan (1999), Linear N. point camera pose determination. IEEE Tr. on PAMI, Vol. 21, No.8, pp. 774-780 https://doi.org/10.1109/34.784291
  11. Zhao. W., D. Nister, and S. Hsu (2005), Alignment of Continuous Video onto 3D Point Clouds, IEEE Tr. on PAMI Vol. 27, No.8, pp. 1305-18 https://doi.org/10.1109/TPAMI.2005.152